首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field‐effect transistors that employ an electrolyte in place of a gate dielectric layer can accumulate ultrahigh‐density carriers not only on a well‐defined channel (e.g., a two‐dimensional surface) but also on any irregularly shaped channel material. Here, on thin films of 95% pure metallic and semiconducting single‐walled carbon nanotubes (SWNTs), the Fermi level is continuously tuned over a very wide range, while their electronic transport and absorption spectra are simultaneously monitored. It is found that the conductivity of not only the semiconducting but also the metallic SWNT thin films steeply changes when the Fermi level reaches the edges of one‐dimensional subbands and that the conductivity is almost proportional to the number of subbands crossing the Fermi level, thereby exhibiting a one‐dimensional nature of transport even in a tangled network structure and at room temperature.  相似文献   

2.
3.
Previous investigations of the field‐effect mobility in poly(3‐hexylthiophene) (P3HT) layers revealed a strong dependence on molecular weight (MW), which was shown to be closely related to layer morphology. Here, charge carrier mobilities of two P3HT MW fractions (medium‐MW: Mn = 7 200 g mol?1; high‐MW: Mn = 27 000 g mol?1) are probed as a function of temperature at a local and a macroscopic length scale, using pulse‐radiolysis time‐resolved microwave conductivity (PR‐TRMC) and organic field‐effect transistor measurements, respectively. In contrast to the macroscopic transport properties, the local intra‐grain mobility depends only weakly on MW (being in the order of 10?2 cm2 V?1 s?1) and being thermally activated below the melting temperature for both fractions. The striking differences of charge transport at both length scales are related to the heterogeneity of the layer morphology. The quantitative analysis of temperature‐dependent UV/Vis absorption spectra according to a model of F. C. Spano reveals that a substantial amount of disordered material is present in these P3HT layers. Moreover, the analysis predicts that aggregates in medium‐MW P3HT undergo a “pre‐melting” significantly below the actual melting temperature. The results suggest that macroscopic charge transport in samples of short‐chain P3HT is strongly inhibited by the presence of disordered domains, while in high‐MW P3HT the low‐mobility disordered zones are bridged via inter‐crystalline molecular connections.  相似文献   

4.
Polymer wrapped single‐walled carbon nanotubes (SWNTs) have been demonstrated to be a very efficient technique to obtain high purity semiconducting SWNT solutions. However, the extraction yield of this technique is low compared to other techniques. Poly‐alkyl‐thiophenes have been reported to show higher extraction yield compare to polyfluorene derivatives. Here, the affinity for semiconducting SWNTs of two polymers with a backbone containing didodecylthiophene units interspersed with N atoms is reported. It is demonstrated that one of the polymers, namely, poly(2,5‐dimethylidynenitrilo‐3,4‐didodecylthienylene) (PAMDD), has very high semiconducting SWNT extraction yield compared to the poly(3,4‐didodecylthienylene)azine (PAZDD). The dissimilar wrapping efficiency of these two polymers for semiconducting SWNTs is attributed to the interplay between the affinity for the nitrogen atoms of the highly polarizable walls of SWNTs and the mechanical flexibility of the polymer backbones. Photoluminescence (PL) measurements demonstrate the presence of metallic tubes and SWNT bundles in the sample selected with PAZDD and higher purity of SWNT‐PAMDD samples. The high purity of the semiconducting SWNTs selected by PAMDD is further demonstrated by the high performance of the solution‐processed field‐effect transistors (FETs) fabricated using a blade coating technique, which exhibit hole mobilities up to 33.3 cm2 V?1 s?1 with on/off ratios of 106.  相似文献   

5.
The study of monolayer organic field‐effect transistors (MOFETs) provides an effective way to investigate the intrinsic charge transport of semiconductors. To date, the research based on organic monolayers on polymeric dielectrics lays far behind that on inorganic dielectrics and the realization of a bulk‐like carrier mobility on pure polymer dielectrics is still a formidable challenge for MOFETs. Herein, a quasi‐monolayer coverage of pentacene film with orthorhombic phase is grown on the poly (amic acid) (PAA) dielectric layer. More significantly, charge density redistribution occurs at the interface between the pentacene and PAA caused by electron transfer from pentacene to the PAA dielectric layer, which is verified by theoretical simulations and experiments. As a consequence, an enhanced hole accumulation layer is formed and pentacene‐based MOFETs on pure polymer dielectrics exhibit bulk‐like carrier mobilities of up to 13.7 cm2 V?1 s?1 from the saturation region at low VGS, 9.1 cm2 V?1 s?1 at high VGS and 7.6 cm2 V?1 s?1 from the linear region, which presents one of the best results of previously reported MOFETs so far and indicates that the monolayer semiconductor growing on pure polymer dielectric could produce highly efficient charge transport.  相似文献   

6.
Printed random networks of polymer-wrapped multi-chiral semiconducting carbon nanotubes (s-SWCNTs) are an opportunity for mass-manufacturable, high-performance large-area electronics. To meet this goal, a deeper understanding of charge-transport mechanisms in such mixed networks is crucial. Here, charge transport in field-effect transistors based on inkjet-printed s-SWCNTs networks is investigated, obtaining direct evidence for the phases probed by charge in the accumulated channel, which is critical information to rationalize the different transport properties obtained for different printing conditions. In particular, when the fraction of nanotubes with smaller bandgaps is efficiently interconnected, the sparse network provides efficient charge percolation for band-like transport, with a charge mobility as high as 20.2 cm2 V−1 s−1. However, when the charges are forced by a less efficient morphology, to populate also higher bandgap nanotubes and and/or the wrapping polymer, thermally activated transport takes place and mobility drops. As a result, a trade-off between network density and charge transport properties is identified for device current optimization, in both p- and n-type regimes. These findings shed light on the fundamental aspects related to charge transport in printed s-SWCNT mixed networks and contribute to devise appropriate strategies for the formulation of inks and processes towards cost-effective mass production schemes of high-performance large-area electronics.  相似文献   

7.
Injecting high electronic charge densities can profoundly change the optical, electrical, and magnetic properties of materials. Such charge injection in bulk materials has traditionally involved either dopant intercalation or the maintained use of a contacting electrolyte. Tunable electrochemical charge injection and charge retention, in which neither volumetric intercalation of ions nor maintained electrolyte contact is needed, are demonstrated for carbon nanotube sheets in the absence of an applied field. The tunability of electrical conductivity and electron field emission in the subsequent material is presented. Application of this material to supercapacitors may extend their charge‐storage times because they can retain charge after the removal of the electrolyte.  相似文献   

8.
A novel solution spinning method to produce highly conducting carbon nanotube (CNT) biofibers is reported. In this process, carbon nanotubes are dispersed using biomolecules such as hyaluronic acid, chitosan, and DNA, and these dispersions are used as spinning solutions. Unlike previous reports in which a polymer binder is used in the coagulation bath, these dispersions can be converted into fibers simply by altering the nature of the coagulation bath via pH control, use of a crosslinking agent, or use of a biomolecule‐precipitating solvent system. With strength comparable to most reported CNT fibers to date, these CNT biofibers demonstrate superior electrical conductivities. Cell culture experiments are performed to investigate the cytotoxicity of these fibers. This novel fiber spinning approach could simplify methodologies for creating electrically conducting and biocompatible platforms for a variety of biomedical applications, particularly in those systems where the application of an electrical field is advantageous?for example, in directed nerve and/or muscle repair.  相似文献   

9.
The origins of gate‐induced hysteresis in carbon nanotube field‐effect transistors are explained and techniques to eliminate this hysteresis with encapsulating layers of methylsiloxane and modified processes for nanotube growth are reported. A combined experimental and theoretical analysis of the dependence of hysteresis on the gate voltage sweep‐rate reveals the locations, types, and densities of defects that contribute to hysteresis. Devices with designs that eliminate these defects exhibit more than ten times reduction in hysteresis compared to conventional layouts. Demonstrations in individual transistors that use both networks and arrays of nanotubes, and in simple logic gates built with these devices, illustrate the utility of the proposed approaches.  相似文献   

10.
Field‐effect transistors (FETs) fabricated on large diameter carbon nanotubes (CNTs) present typical ambipolar transfer characteristics owing to the small band‐gap of CNTs. Depending on the DC biasing condition, the ambipolar FET can work in three different regions, and then can be used as the core to realize multifunctional AC circuits. The CNT FET based circuits can work as a high‐efficiency ambipolar frequency doubler in the ambipolar transfer region, and also can function as in‐phase amplifier and inverted amplifier in the linear transfer region. Due to current saturation of the CNT FET, an AC amplifier with a voltage gain of 2 is realized when the device works in the linear transfer region. Achieving an actual amplification and frequency doubling functions indicates that complicated radio frequency circuits or systems can be constructed based on just one kind of device: ambipolar CNT FETs.  相似文献   

11.
The nature of charge carriers in recently developed high mobility semiconducting donor‐acceptor polymers is debated. Here, localization due to charge relaxation is investigated in a prototypal system, a good electron transporting naphthalenediimide based copolymer, by means of current‐voltage IV electrical characteristics and charge modulation spectroscopy (CMS) in top‐gate field‐effect transistors (FETs), combined with density functional theory (DFT) and time dependent DFT (TDDFT) calculations. In particular, pristine copolymer films are compared with films that underwent a melt‐annealing process, the latter leading to a drastic change of the microstructure. Despite the packing modification, which involves also the channel region, both the electron mobility and the energy of polaronic transitions are substantially unchanged upon melt‐annealing. The polaron absorption features can be rationalized and reproduced by TDDFT calculations for isolated charged oligomers. Therefore, it is concluded that in such a high electron mobility copolymer the charge transport process involves polaronic species which are intramolecular in nature and, from a more general point of view, that interchain delocalization of the polaron is not necessary to sustain charge mobilities in the 0.1 to 1 cm2 V 1 s–1 range. These findings contribute to the rationalization of the charge transport process in the recently developed class of donor‐acceptor π‐conjugated copolymers featuring high charge mobilities and complex morphologies.  相似文献   

12.
Charge transport in the ribbon phase of poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT)—one of the most highly ordered, chain‐extended crystalline microstructures available in a conjugated polymer semiconductor—is studied. Ribbon‐phase PBTTT has previously been found not to exhibit high carrier mobilities, but it is shown here that field‐effect mobilities depend strongly on the device architecture and active interface. When devices are constructed such that the ribbon‐phase films are in contact with either a polymer gate dielectric or an SiO2 gate dielectric modified by a hydrophobic, self‐assembled monolayer, high mobilities of up to 0.4 cm2 V?1 s?1 can be achieved, which is comparable to those observed previously in terrace‐phase PBTTT. In uniaxially aligned, zone‐cast films of ribbon‐phase PBTTT the mobility anisotropy is measured for transport both parallel and perpendicular to the polymer chain direction. The mobility anisotropy is relatively small, with the mobility along the polymer chain direction being higher by a factor of 3–5, consistent with the grain size encountered in the two transport directions.  相似文献   

13.
Four soluble dialkylated tetrathienoacene ( TTAR) ‐based small molecular semiconductors featuring the combination of a TTAR central core, π‐conjugated spacers comprising bithiophene ( bT ) or thiophene ( T ), and with/without cyanoacrylate ( CA ) end‐capping moieties are synthesized and characterized. The molecule DbT‐TTAR exhibits a promising hole mobility up to 0.36 cm2 V?1 s?1 due to the enhanced crystallinity of the microribbon‐like films. Binary blends of the p‐type DbT‐TTAR and the n‐type dicyanomethylene substituted dithienothiophene‐quinoid ( DTTQ‐11 ) are investigated in terms of film morphology, microstructure, and organic field‐effect transistor (OFET) performance. The data indicate that as the DbT‐TTAR content in the blend film increases, the charge transport characteristics vary from unipolar (electron‐only) to ambipolar and then back to unipolar (hole‐only). With a 1:1 weight ratio of DbT‐TTAR DTTQ‐11 in the blend, well‐defined pathways for both charge carriers are achieved and resulted in ambipolar transport with high hole and electron mobilities of 0.83 and 0.37 cm2 V?1 s?1, respectively. This study provides a viable way for tuning microstructure and charge carrier transport in small molecules and their blends to achieve high‐performance solution‐processable OFETs.  相似文献   

14.
Single‐walled carbon nanotubes (SWNTs) are a promising material for future nanotechnology. However, their applications are still limited in success because of the co‐existence of metallic SWNTs and semiconducting SWNTs produced samples. Here, electrochemical etching, which shows both diameter and electrical selectivity, is demonstrated to remove SWNTs. With the aid of a back‐gate electric field, selective removal of metallic SWNTs is realized, resulting in high‐performance SWNT field‐effect transistors with pure semiconducting SWNT channels. Moreover, electrochemical etching is realized on a selective area. These findings would be valuable for research and the application of SWNTs in electrochemistry and in electronic devices.  相似文献   

15.
Polymers which enrich semiconducting single‐walled carbon nanotubes (SWNTs) and are also removable after enrichment are highly desirable for achieving high‐performance field‐effect transistors (FETs). We have designed and synthesized a new class of alternating copolymers containing main‐chain fluorene and hydrofluoric acid (HF) degradable disilane for sorting and preferentially suspending semiconducting nanotube species. The results of optical absorbance, photoluminescence emission, and resonant Raman scattering show that poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐alt‐co‐1,1,2,2‐tetramethyl‐disilane] preferentially suspends semiconducting nanotubes with larger chiral angle (25°–28°) and larger diameter (1.03 nm–1.17 nm) (specifically (8,7), (9,7) and (9,8) species) present in HiPCO nanotube samples. Computer simulation shows that P1 preferentially interacts with (8,7) (semiconducting) over (7,7) (metallic) species, confirming that P1 selects larger diameter, larger chiral angle semiconducting tubes. P1 wrapped on the surface of SWNTs is easily washed off through degradation of the disilane bond of the alternating polymer main chain in HF, yielding “clean” purified SWNTs. We have applied the semiconducting species enriched SWNTs to prepare solution‐processed FET devices with random nanotube network active channels. The devices exhibit stable p‐type semiconductor behavior in air with very promising characteristics. The on/off current ratio reaches up to 15 000, with on‐current level of around 10 μA and estimated hole mobility of 5.2 cm2 V?1 s?1.  相似文献   

16.
Temperature‐dependent (80–350 K) charge transport in polymer semiconductor thin films is studied in parallel with in situ X‐ray structural characterization at equivalent temperatures. The study is conducted on a pair of isoindigo‐based polymers containing the same π‐conjugated backbone with different side chains: one with siloxane‐terminated side chains (PII2T‐Si) and the other with branched alkyl‐terminated side chains (PII2T‐Ref). The different chemical moiety in the side chain results in a completely different film morphology. PII2T‐Si films show domains of both edge‐on and face‐on orientations (bimodal orientation) while PII2T‐Ref films show domains of edge‐on orientation (unimodal orientation). Electrical transport properties of this pair of polymers are also distinctive, especially at high temperatures (>230 K). Smaller activation energy (E A) and larger pre‐exponential factor (μ 0) in the mobility‐temperature Arrhenius relation are obtained for PII2T‐Si films when compared to those for PII2T‐Ref films. The results indicate that the more effective transport pathway is formed for PII2T‐Si films than for the other, despite the bimodally oriented film structure. The closer π–π packing distance, the longer coherence length of the molecular ordering, and the smaller disorder of the transport energy states for PII2T‐Si films altogether support the conduction to occur more effectively through a system with both edge‐on and face on orientations of the conjugated molecules. Reminding the 3D nature of conduction in polymer semiconductor, our results suggest that the engineering rules for advanced polymer semiconductors should not simply focus on obtaining films with conjugated backbone in edge‐on orientation only. Instead, the engineering should also encounter the contribution of the inevitable off‐directional transport process to attain effective transport from polymer thin films.  相似文献   

17.
The integration of redox proteins with nanomaterials has attracted much interest in the past years, and metallic single‐walled carbon nanotubes (SWNTs) have been introduced as efficient electrical wires to connect biomolecules to metal electrodes in advanced nano‐biodevices. Besides preserving biofunctionality, the protein–nanotube connection should ensure appropriate molecular orientation, flexibility, and efficient, reproducible electrical conduction. In this respect, yeast cytochrome c redox proteins are connected to gold electrodes through lying‐down functionalized metallic SWNTs. Immobilization of cytochromes to nanotubes is obtained via covalent bonding between the exposed protein thiols and maleimide‐terminated functional chains attached to the carbon nanotubes. A single‐molecule study performed by combining scanning probe nanoscopies ascertains that the protein topological properties are preserved upon binding and provides unprecedented current images of single proteins bound to carbon nanotubes that allow a detailed IV characterization. Collectively, the results point out that the use as linkers of suitably functionalized metallic SWNTs results in an electrical communication between redox proteins and gold electrodes more efficient and reproducible than for proteins directly connected with metal surfaces.  相似文献   

18.
采用基于密度泛函理论的非平衡格林函数法(Non-equilibrium Green functions,NEGF),对耦合于两个面心立方间的Al(111)电极间的(8,0)碳纳米管(Carbon nanotube,CNT)传输特性进行了计算。结果表明,在小偏压下(-40~40 mV),碳纳米管伏安特性与孤立碳纳米管的接近为零不同,而是接近为线性,这是耦合导致碳纳米管能级移动的结果。  相似文献   

19.
Sorting of semiconducting single‐walled carbon nanotubes (SWNTs) by conjugated polymers has attracted considerable attention recently because of its simplicity, high selectivity, and high yield. However, up to now, all the conjugated polymers used for SWNT sorting are electron‐donating (p‐type). Here, a high‐mobility electron‐accepting (n‐type) polymer poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) (P(NDI2OD‐T2)) is utilized for the sorting of high‐purity semiconducting SWNTs, as characterized by Raman spectroscopy, dielectric force spectroscopy and transistor measurements. In addition, the SWNTs sorted by P(NDI2OD‐T2) have larger diameters than poly(3‐dodecylthiophene) (P3DDT)‐sorted SWNTs. Molecular dynamics simulations in explicit toluene demonstrate distinct linear or helical wrapping geometry between P(NDI2OD‐T2) and different types of SWNTs, likely as a result of the strong interactions between the large aromatic core of the P(NDI2OD‐T2) backbone and the hexagon path of SWNTs. By using high‐mobility n‐type P(NDI2OD‐T2) as the sorting polymer, ambipolar SWNT transistors with better electron transport than that attained by P3DDT‐sorted SWNTs are achieved. As a result, flexible negated AND and negated OR logic circuits from the same set of ambipolar transistors are fabricated, without the need for doping. The use of n‐type polymers for sorting semiconducting SWNTs and achieving ambipolar SWNT transistor characteristics greatly simplifies the fabrication of flexible complementary metal‐oxide‐semiconductor‐like SWNT logic circuits.  相似文献   

20.
The thermal conductivity of gas‐permeated single‐walled carbon nanotube (SWCNT) aerogel (8 kg m?3 density, 0.0061 volume fraction) is measured experimentally and modeled using mesoscale and atomistic simulations. Despite the high thermal conductivity of isolated SWCNTs, the thermal conductivity of the evacuated aerogel is 0.025 ± 0.010 W m?1 K?1 at a temperature of 300 K. This very low value is a result of the high porosity and the low interface thermal conductance at the tube–tube junctions (estimated as 12 pW K?1). Thermal conductivity measurements and analysis of the gas‐permeated aerogel (H2, He, Ne, N2, and Ar) show that gas molecules transport energy over length scales hundreds of times larger than the diameters of the pores in the aerogel. It is hypothesized that inefficient energy exchange between gas molecules and SWCNTs gives the permeating molecules a memory of their prior collisions. Low gas‐SWCNT accommodation coefficients predicted by molecular dynamics simulations support this hypothesis. Amplified energy transport length scales resulting from low gas accommodation are a general feature of CNT‐based nanoporous materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号