首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Nanomedicine is a promising approach for combination chemotherapy of triple‐negative breast cancer (TNBC). However, the therapeutic efficacy of nanoparticulate drugs is suppressed by a series of biological barriers. The authors herein present a programmed stimuli‐responsive liposomal vesicle to overcome the sequential barriers for enhanced TNBC therapy. The intelligent vesicles are engineered by integrating an enzyme‐cleavable polyethylene glycol (PEG) corona, a light‐responsive photosensitizer pheophorbide a (PPa), and a temperature‐sensitive liposome (TSL) into a single nanoplatform. The resultant enzyme, light, and temperature multisensitive liposome (ELTSL) is sequentially coloaded with a lipophilic oxaliplatin prodrug of hexadecyl‐oxaliplatin carboxylic acid (HOC) and hydrophilic doxorubicin hydrochloride (DOX). Dual drug‐loaded ELTSL displays enhanced tumor penetration and increased cellular uptake upon matrix metalloproteinase 2 mediated cleavage of the PEG corona. Under NIR laser irradiation, PPa induces mild hyperthermia effect to trigger ultrafast drug release in the tumor cells. In combination with PPa‐mediated photodynamic therapy, HOC and DOX coloaded ELTSL show significantly improved antitumor efficacy than monotherapy. Given the clinically translatable potential of the liposomal vesicles, ELTSL might represent a promising nanoplatform for combination TNBC therapy.  相似文献   

2.
The cell‐specific targeting drug delivery and controlled release of drug at the cancer cells are still the main challenges for anti‐breast cancer metastasis therapy. Herein, the authors first report a biomimetic drug delivery system composed of doxorubicin (DOX)‐loaded gold nanocages (AuNs) as the inner cores and 4T1 cancer cell membranes (CMVs) as the outer shells (coated surface of DOX‐incorporated AuNs (CDAuNs)). The CDAuNs, perfectly utilizing the natural cancer cell membranes with the homotypic targeting and hyperthermia‐responsive ability to cap the DAuNs with the photothermal property, can realize the selective targeting of the homotypic tumor cells, hyperthermia‐triggered drug release under the near‐infrared laser irradiation, and the combination of chemo/photothermal therapy. The CDAuNs exhibit a stimuli‐release of DOX under the hyperthermia and a high cell‐specific targeting of the 4T1 cells in vitro. Moreover, the excellent combinational therapy with about 98.9% and 98.5% inhibiting rates of the tumor volume and metastatic nodules is observed in the 4T1 orthotopic mammary tumor models. As a result, CDAuNs can be a promising nanodelivery system for the future therapy of breast cancer.  相似文献   

3.
A smart drug delivery system integrating both photothermal therapy and chemotherapy for killing cancer cells is reported. The delivery system is based on a mesoporous silica‐coated Pd@Ag nanoplates composite. The Pd@Ag nanoplate core can effectively absorb and convert near infrared (NIR) light into heat. The mesoporous silica shell is provided as the host for loading anticancer drug, doxorubicin (DOX). The mesoporous shell consists of large pores, ~10 nm in diameter, and allows the DOX loading as high as 49% in weight. DOX loaded core–shell nanoparticles exhibit a higher efficiency in killing cancer cells than free DOX. More importantly, DOX molecules are loaded in the mesopores shell through coordination bonds that are responsive to pH and heat. The release of DOX from the core‐shell delivery vehicles into cancer cells can be therefore triggered by the pH drop caused by endocytosis and also NIR irradiation. A synergistic effect of combining chemotherapy and photothermal therapy is observed in our core‐shell drug delivery system. The cell‐killing efficacy by DOX‐loaded core–shell particles under NIR irradiation is higher than the sum of chemotherapy by DOX‐loaded particles and photothermal therapy by core–shell particles without DOX.  相似文献   

4.
Optimal nanosized drug delivery systems (NDDS) require long blood circulation and controlled drug release at target lesions for efficient anticancer therapy. Red blood cell (RBC) membrane‐camouflaged nanoparticles (NPs) can integrate flexibility of synergetic materials and highly functionality of RBC membrane, endowed with many unique advantages for drug delivery. Here, new near‐infrared (NIR)‐responsive RBC membrane‐mimetic NPs with NIR‐activated cellular uptake and controlled drug release for treating metastatic breast cancer are reported. An NIR dye is inserted in RBC membrane shells, and the thermoresponsive lipid is employed to the paclitaxel (PTX)‐loaded polymeric cores to fabricate the RBC‐inspired NPs. The fluorescence of dye in the NPs can be used for in vivo tumor imaging with an elongated circulating halftime that is 12.3‐folder higher than that of the free dye. Under the NIR laser stimuli, the tumor cellular uptake of NPs is significantly enhanced to 2.1‐fold higher than that without irradiation. The structure of the RBC‐mimetic NPs can be destroyed by the light‐induced hyperthermia, triggered rapid PTX release (45% in 30 min). These RBC‐mimetic NPs provide a synergetic chemophotothermal therapy, completely inhibited the growth of the primary tumor, and suppress over 98% of lung metastasis in vivo, suggesting it to be an ideal NDDS to fight against metastatic breast cancer.  相似文献   

5.
A reactive oxygen species (ROS)‐activatable doxorubicin (Dox) prodrug vesicle (RADV) is presented for image‐guided ultrafast drug release and local‐regional therapy of the metastatic triple‐negative breast cancer (TNBC). RADV is prepared by integrating a ROS‐activatable Dox prodrug, a poly(ethylene glycol) (PEG)‐modified photosensitizer pyropheophorbide‐a, an unsaturated phospholipid 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine, and cholesterol into one single nanoplatform. RADV is of extremely high drug loading ratio (27.5 wt%) by self‐assembly of the phospholipid‐mimic Dox prodrug into the liposomal bilayer membrane. RADV displays good colloidal stability to prevent premature drug leakage during the blood circulation and inert photochemotoxicity to avoid nonspecific side effect. RADV passively accumulates at tumor site through the enhanced permeability and retention effect when administrated systemically. Once deposited at the tumor site, RADV generates fluorescent and photoacoustic signals to guide near‐infrared (NIR) laser irradiation, which can induce localized ROS generation, not only to trigger prodrug activation and ultrafast drug release but also conduct photodynamic therapy in a spatiotemporally controlled manner. In combination with NIR laser irradiation, RADV efficiently inhibits the tumor growth and distant metastasis of TNBC. Local‐regional tumor therapy using intelligent theranostic nanomedicine might provide an alternative option for highly efficient treatment of the metastatic TNBC.  相似文献   

6.
Single wall carbon nanotube (SWNT) based thermo‐sensitive hydrogel (SWNT‐GEL) is reported, which provides an injectable drug delivery system as well as a medium for photothermal transduction. SWNT‐hydrogel alone appears to be nontoxic on gastric cancer cells (BGC‐823 cell line) but leads to cell death with NIR radiation through a hyperthermia proapoptosis mechanism. By incorporating hyperthermia therapy and controlled in situ doxorubicin (DOX) release, DOX‐loaded SWNT‐hydrogel with NIR radiation proves higher tumor suppression rate on mice xenograft gastric tumor models compared to free DOX without detectable organ toxicity. The developed system demonstrates improved efficacy of chemotherapeutic drugs which overcomes systemic adverse reactions and presents immense potential for gastric cancer treatment.  相似文献   

7.
Development of single near‐infrared (NIR) laser triggered phototheranostics for multimodal imaging guided combination therapy is highly desirable but is still a big challenge. Herein, a novel small‐molecule dye DPP‐BT is designed and synthesized, which shows strong absorption in the first NIR window (NIR‐I) and fluorescence emission in the second NIR region (NIR‐II). Such a dye not only acts as a dual‐modal contrast agent for NIR‐II fluorescence and photoacoustic (PA) imaging, but also serves as a combined therapeutic agent for photothermal therapy (PTT) and photodynamic therapy (PDT). The single NIR laser triggered all‐in‐one phototheranostic nanoparticles are constructed by encapsulating the dye DPP‐BT, chemotherapy drug DOX, and natural phase‐change materials with a folic acid functionalized amphiphile. Notably, under NIR laser irradiation, DOX can effectively release from such nanoparticles via NIR‐induced hyperthermia of DPP‐BT. By intravenous injection of such nanoparticles into Hela tumor‐bearing mice, the tumor size and location can be accurately observed via NIR‐II fluorescence/PA dual‐modal imaging. From in vitro and in vivo therapy results, such nanoparticles simultaneously present remarkable antitumor efficacy by PTT/PDT/chemo combination therapy, which is triggered by a single NIR laser. Overall, this work provides an innovative strategy to design and construct all‐in‐one nanoplatforms for clinical phototheranostics.  相似文献   

8.
Photothermal therapy (PTT) combined with chemotherapy, a promising strategy for breast cancer treatment, has a high potential to control drug release, reduce multidrug resistance, and improve therapeutic efficacy. The challenge is how to realize tumor ablation in deeper tissue and NIR-controlled drug delivery. Herein, tumor acidity and near-infrared light (NIR) responsive folic acid (FA) functionalized polydopamine (DPA) nanoparticles (NPs) are developed for doxorubicin (DOX) and epigallocatechin-3-gallate (EGCG) dual delivery. With the assistance of NIR, the cellular uptake of DOX-EGCG/DPA-FA NPs is about three- to sixfold higher when compared with the free DOX group and the control group without NIR irradiation. Moreover, biodistribution study in vivo indicates that DPA-FA NPs can enhance tumoral accumulation, penetration, retention of drugs, and display a ≈ 4- and 19-fold higher intra-tumoral distribution than that of the DPA NPs and free drug groups at 24 h postinjection. Furthermore, 60% of breast cancer-bearing mice survive over 70 days in the DOX-EGCG/DPA-FA NPs group. Additionally, DOX-EGCG/DPA-FA NPs can effectively boost therapeutic efficacy by inducing significant suppression of tumor growth and angiogenesis, and enhancement of apoptosis and necrosis of breast cancer cells. Taken together, DOX-EGCG/DPA-FA NPs may have potential applications as a useful nanoscale vector for enhanced cancer therapy.  相似文献   

9.
The multidrug resistance (MDR) of cancer cells is a major obstacle in cancer chemotherapy and very few strategies are available to overcome it. Here, a new strategy is developed to codeliver a π–π stacked dual anticancer drug combination with an actively targeted, pH‐ and reduction‐sensitive polymer micellar platform for combating multidrug resistance and tumor metastasis. In contrast to other methods, two traditional chemotherapeutics, doxorubicin (DOX) and 10‐hydroxycamptothecin with complex aromatic π–π conjugated structures, are integrated into one drug delivery system via a π–π stacking interaction, which enables the released drugs to evade the recognition of drug pumps due to a slight change in the drug's molecular structure. The micelles exhibit active targeting of DOX‐resistant human breast cancer MCF‐7 cells (MCF‐7/ADR) and have the ability to control the release of the drug in response to the microenvironmental stimuli of tumor cells. As a result, the codelivery of the π–π stacked dual anticancer drug combination displays high therapeutic efficacy in the MCF‐7/ADR tumor model and successfully prevents the lung metastasis of tumor cells. The mechanism underlying the reversal of MDR is investigated, and the results reveal that the synergistic effect of the π–π stacked dual drugs promotes mitochondria‐dependent apoptosis.  相似文献   

10.
A promising theranostic platform for solid tumors would deliver and release anticancer nanomedicine effectively in tumor cells. However, diverse biological barriers, especially related to the tumor microenvironment, impede these theranostic agents from reaching the tumor cell. Herein, a sequential pH and reduction‐responsive polymer and gold nanorod (AuNR) core–shell assembly to overcome these barriers via a two‐stage size decrease and disassembly of the nanoplatform responding to the specified tumor microenvironment are reported. The tumor uptake of the hybrid nanoparticle (NP) is 14.2% ID g?1, which is two and four times higher than the noneresponsive hybrid NPs and small AuNR@PEG, respectively. After tumor uptake of the hybrid NPs, the disassembled ultrasmall AuNRs coated with a polymer of polymerized reduction‐responsive doxorubicin (DOX) prodrug monomers penetrate into the solid tumor and lead to localized DOX release in the tumor cell. A linear increase in photoacustic (PA) effects from the PA activating polymer on an AuNR cluster surface indicates a critical role of electromagnetic fields in the AuNR assembly, which is consistent with the theoretical calculation results. Furthermore, the hybrid NP can serve as a promising deep‐tissue PA and surface‐enhanced Raman scattering imaging agent for real‐time in vivo investigation of physiological behaviors and deep tumor penetrating nanotherapy effects.  相似文献   

11.
Near infrared (NIR) light‐activated supersensitive drug release via photothermal conversion is of particular interest due to its advantages in spatial and temporal control. However, such supersensitive drug release is rarely reported for polymeric nanoparticles. In this study, polymeric nanoparticles observed with flowable core can achieve NIR‐activated supersensitive drug release under the assistance of photothermal agent. It is demonstrated that only 5 s NIR irradiation (808 nm, 0.3 W cm?2) leads to 17.8% of doxorubicin (DOX) release, while its release is almost completely stopped when the NIR laser is switched off. In contrast, the control, poly(d ,l ‐lactide) nanoparticles with rigid cores, do not exhibit such supersensitive effect. It is demonstrated that intraparticle temperature is notably increased during photothermal conversion by detecting fluorescein lifetime using a time‐correlated single photon counting (TCSPC) technique, which is the main driving force for such supersensitive drug release from hydrophobic flow core. In contrast, rigid chain of nanoparticular core hinders drug diffusion. Furthermore, such NIR light‐activated supersensitive drug release is demonstrated, which significantly enhances its anticancer efficacy, resulting in overcoming of the resistance of cancer cells against DOX treatment in vitro and in vivo. This simple and highly universal strategy provides a new approach to fabricate NIR light‐activated supersensitive drug delivery systems.  相似文献   

12.
Noninvasive near‐infrared (NIR) light responsive therapy is a promising cancer treatment modality; however, some inherent drawbacks of conventional phototherapy heavily restrict its application in clinic. Rather than producing heat or reactive oxygen species in conventional NIR treatment, here a multifunctional yolk–shell nanoplatform is proposed that is able to generate microbubbles to destruct cancer cells upon NIR laser irradiation. Besides, the therapeutic effect is highly improved through the coalition of small interfering RNA (siRNA), which is codelivered by the nanoplatform. In vitro experiments demonstrate that siRNA significantly inhibits expression of protective proteins and reduces the tolerance of cancer cells to bubble‐induced environmental damage. In this way, higher cytotoxicity is achieved by utilizing the yolk–shell nanoparticles than treated with the same nanoparticles missing siRNA under NIR laser irradiation. After surface modification with polyethylene glycol and transferrin, the yolk–shell nanoparticles can target tumors selectively, as demonstrated from the photoacoustic and ultrasonic imaging in vivo. The yolk–shell nanoplatform shows outstanding tumor regression with minimal side effects under NIR laser irradiation. Therefore, the multifunctional nanoparticles that combining bubble‐induced mechanical effect with RNA interference are expected to be an effective NIR light responsive oncotherapy.  相似文献   

13.
A photoresponsive pea‐like capsule (nanopea) that also represents a photothermal agent is constructed by wrapping multiple polymer micelles (polyvinyl alcohol, PVA) in reduced graphene oxide nanoshells through a double emulsion approach. Resulting nanopeas can transport multiple PVA micelles containing the fully concealed hydrophobic drug docetaxel (DTX) which can be later released by a near‐infrared photoactuation trigger. Through integrating the rod‐shaped adhesion and lactoferrin (Lf) targeting, the nanopea enhances both uptake by cancer cellc in vitro and particle accumulation at tumor in vivo. A photopenetrative delivery of micelles/DTX to the tumor site is actuated by NIR irradiation which ruptures the nanopeas as well as releases nanosized micelles/DTX. This trigger also results in thermal damage to the tumor and increases the micelles/DTX permeability, facilitating drug penetration into the deep tumor far from blood vessels for thermal chemotherapy. This nanopea with the capability of imaging, enhanced tumor accumulation, NIR‐triggered tumor penetration, and hyperthermia ablation for photothermal chemotherapy boosts tumor treatment and shows potential for use in other biological applications.  相似文献   

14.
The tumor growth and metastasis is the leading reason for the high mortality of breast cancer. Herein, it is first reported a deep tumor‐penetrating photothermal nanotherapeutics loading a near‐infrared (NIR) probe for potential photothermal therapy (PTT) of tumor growth and metastasis of breast cancer. The NIR probe of 1,1‐dioctadecyl‐3,3,3,3‐tetramethylindotricarbocyanine iodide (DiR), a lipophilicfluorescent carbocyanine dye with strong light‐absorbing capability, is entrapped into the photothermal nanotherapeutics for PTT application. The DiR‐loaded photothermal nanotherapeutics (DPN) is homogeneous nanometer‐sized particles with the mean diameter of 24.5 ± 4.1 nm. Upon 808 nm laser irradiation, DPN presents superior production of thermal energy than free DiR both in vitro and in vivo. The cell proliferation and migration activities of metastatic 4T1 breast cancer cells are obviously inhibited by DPN in combination with NIR irradiation. Moreover, DPN can induce a higher accumulation in tumor and penetrate into the deep interior of tumor tissues. The in vivo PTT measurements indicate that the growth and metastasis of breast cancer are entirely inhibited by a single treatment of DPN with NIR irradiation. Therefore, the deep tumor‐penetrating DPN can provide a promising strategy for PTT of tumor progression and metastasis of breast cancer.  相似文献   

15.
Triple‐negative breast cancer (TNBC) is a kind of aggressive malignancy with fast metastatic behavior. Herein, a nanosystem loaded with a near‐infrared (NIR) agent is developed to achieve chemo‐photothermal combination therapy for inhibiting tumor growth and metastasis in TNBC. The NIR agent of ultrasmall sized copper sulfide nanodots with strong NIR light‐absorbing capability is entrapped into the doxorubicin‐contained temperature‐sensitive polymer‐based nanosystem by a self‐assembled method. The temperature sensitive nanoclusters (TSNCs) can significantly enhance the drug penetration depth and significantly kill the cancer cells under the near‐infrared laser irradiation. Importantly, it is plausible that the tumor penetrating nanosystem combined with NIR laser irradiation can prevent lung and liver metastasis via extermination of the cancer stem cells. The in vivo characteristics, evaluated by photoacoustic imaging, pharmacokinetics, and biodistribution, confirm their feasibility for tumor treatment owing to their long blood circulation time and high tumor uptake. Thanks to the high tumor uptake and highly potent antitumor efficacy, the doxorubicin‐induced cardiotoxicity can be avoided when the TSNC is used. Taken together, it is believed that the nanosystem has excellent potential for clinical translation.  相似文献   

16.
The potential therapeutic implications of nitric oxide (NO) for diverse diseases have been under consideration for years; however, the development of precisely controllable NO generation system with potential for clinical application has remained elusive. Herein, intelligent near‐infrared (NIR) laser‐triggered NO nanogenerators for the treatment of multidrug‐resistant (MDR) cancer are fabricated by integrating photothermal agents and heat‐sensitive NO donors into a single nanoparticle. Such nanogenerators can absorb 808 nm NIR photons and convert them into ample heat to trigger NO release. The generated NO molecules are demonstrated to successfully achieve multidrug‐resistance reversal by inhibiting the expression of P‐glycol protein. Consequently, the intracellular accumulation of doxorubicin is effectively increased, resulting in high toxicity to MDR cancer cells in vitro. By virtue of surface modification with targeting ligands, these nanoparticles are able to selectively accumulate in tumor tissue. The therapeutic effects of the nanogenerators are validated in a humanized MDR cancer model. The in vivo experiment indicates that the nanoparticles possess excellent tumor suppression functionality with few side effects upon NIR laser exposure. Therefore, this novel photothermal conversion‐based NO‐releasing platform is expected to be a potential alternative to clinical MDR cancer treatment and may provide insights with regard to other NO‐relevant medical treatments.  相似文献   

17.
This work designs a class of biocompatible PEG‐chitosan@CDs hybrid nanogels by integrating nonlinear poly(ethylene glycol) (PEG), chitosan, and graphitic carbon dots (CDs) into a single nanoparticle for two‐photon fluorescence (TPF) bioimaging, pH and near‐infrared (NIR) light dual‐responsive drug release, and synergistic therapy. Such hybrid nanogels can be simply prepared from a one‐pot surfactant‐free precipitation polymerization of the PEG macromonomers complexed with chitosan and CDs in water, resulting in a semi‐interpenetration of chitosan chains and an immobilization of CDs in the nonlinear PEG networks. The embedded CDs in hybrid nanogels not only serve as an excellent confocal and TPF imaging contrast agent and fluorescent pH‐sensing probe, but also enhance the loading capacity of the hybrid nanogels for hydrophobic anticancer drug. The chitosan can induce a pH‐sensitive swelling/deswelling of the hybrid nanogels for pH‐regulated drug release over the physiologically important range of 5.0–7.4 and surface modulation of embedded CDs to realize fluorescent pH sensing. The thermosensitive nonlinear PEG network can promote the drug release through the local heat produced by the embedded CDs under NIR irradiation. The in vitro results indicate that the hybrid nanogels demonstrated high therapeutic efficacy through the synergistic effect of combined chemo–photothermal treatments.  相似文献   

18.
The synthesis of microcapsules consisting of DNA shells crosslinked by anti‐VEGF (vascular epithelial growth factor) or anti‐ATP (adenosine triphosphate) aptamers and loaded with tetramethylrhodamine‐modified dextran, TMR‐D, and Texas Red‐modified dextran, TR‐D, respectively, as fluorescence labels acting as models for drug loads, is described. The aptamer‐functionalized microcapsules act as stimuli‐responsive carriers for the triggered release of the fluorescent labels in the presence of the overexpressed cancer cell biomarkers VEGF or ATP. The VEGF‐ and ATP‐responsive microcapsules are, also, loaded with the anticancer drug doxorubicin (DOX), in the form of DOX‐functionalized dextran, DOX‐D. The release of DOX‐D from the respective microcapsules proceeds in the presence of VEGF or ATP as triggers. Preliminary cell experiments reveal that the ATP‐responsive DOX‐D‐loaded microcapsules undergo effective endocytosis into MDA‐MB‐231 cancer cells. The ATP‐responsive DOX‐D‐loaded microcapsules incorporated into the MDA‐MB‐231 cancer cells reveal impressive cytotoxicity as compared to normal epithelial MCF‐10A breast cells (50% vs 0% cell death after 24 h, respectively). The cytotoxicity of the ATP‐responsive DOX‐D‐loaded microcapsules toward the cancer cells is attributed to the effective unlocking of the microcapsules by overexpressed ATP, and to the subsequent release of DOX from the dextran backbone under acidic conditions present in cancer cells (pH = 6.2).  相似文献   

19.
The development of cancer combination therapies, many of which rely on nanoscale theranostic agents, has received increasing attention in recent years. In this work, polyethylene glycol (PEG) modified mesoporous silica (MS) coated single‐walled carbon nanotubes (SWNTs) are fabricated and utilized as a multifunctional platform for imaging guided combination therapy of cancer. A model chemotherapy drug, doxorubicin (DOX), could be loaded into the mesoporous structure of the obtained SWNT@MS‐PEG nano‐carriers with high efficiency. Upon stimulation under near‐infrared (NIR) light, photothermally triggered drug release from DOX loaded SWNT@MS‐PEG is observed inside cells, resulting in a synergistic cancer cell killing effect. As revealed by both photoacoustic (PA) and magnetic resonance (MR) imaging, we further uncover efficient tumor accumulation of SWNT@MS‐PEG/DOX after intravenous injection into mice. In vivo combination therapy using this agent is further demonstrated in a mouse tumor model, achieving a remarkable synergistic anti‐tumor effect superior to that obtained by mono‐therapy. Our work presents a new type of theranostic nano‐platform, which could load therapeutic molecules with high efficiency, be responsive to external NIR stimulation, and at the same time serve as a diagnostic imaging agent.  相似文献   

20.
Smart drug delivery systems with on‐demand drug release capability are rather attractive to realize highly specific cancer treatment. Herein, a novel light‐responsive drug delivery platform based on photosensitizer chlorin e6 (Ce6) doped mesoporous silica nanorods (CMSNRs) is developed for on‐demand light‐triggered drug release. In this design, CMSNRs are coated with bovine serum albumin (BSA) via a singlet oxygen (SO)‐sensitive bis‐(alkylthio)alkene (BATA) linker, and then modified with polyethylene glycol (PEG). The obtained CMSNR‐BATA‐BSA‐PEG, namely CMSNR‐B‐PEG, could act as a drug delivery carrier to load with either small drug molecules such as doxorubicin (DOX), or larger macromolecules such as cis‐Pt (IV) pre‐drug conjugated third generation dendrimer (G3‐Pt), both of which are sealed inside the mesoporous structure of nanorods by BSA coating. Upon 660 nm light irradiation with a rather low power density, CMSNRs with intrinsic Ce6 doping would generate SO to cleave BATA linker, inducing detachment of BSA‐PEG from the nanorod surface and thus triggering release of loaded DOX or G3‐Pt. As evidenced by both in vitro and in vivo experiments, such CMSNR‐B‐PEG with either DOX or G3‐Pt loading offers remarkable synergistic therapeutic effects in cancer treatment, owing to the on‐demand release of therapeutics specifically in the tumor under light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号