首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A barrier layer of undoped TiO2 was deposited on the Nb‐doped TiO2 electrode to suppress the recombination at the Nb‐doped TiO2/dye–electrolyte interface for highly efficient dye‐sensitized solar cells (DSCs). The Nb content in TiO2 was varied in a range of 0.7–3.5 mol% to modify the TiO2 energy‐band structure. Nb‐doped TiO2/dye interfaces were characterized by a combination of ultraviolet photoemission spectroscopy and optical absorption spectroscopy measurements, allowing the determination of the conduction band minimum (CBM) of the TiO2 electrode and the lowest unoccupied molecular orbital of the N719 dye. The lowering of TiO2 CBM by Nb doping induced the increase in short‐circuit current of DSCs. However, open‐circuit voltage and fill factor are decreased, and this result was ascribed to the enhanced recombination at the Nb‐doped TiO2/dye–electrolyte interface. The effect of doping on charge transport in DSCs was analyzed using electrochemical impedance spectroscopy. We have shown that by introducing of TiO2 barrier layer, the Nb doping content, which results in DSC highest efficiency, can be increased because of the suppression of the dopant‐induced recombination. The energy conversion efficiency of the solar cells increased from 7.8% to 9.0% when undoped TiO2 electrode is replaced with electrode doped with 2.7 mol% of Nb because of the improvement of the electron injection and collection efficiencies. The correlation between the electronic structure of the TiO2 electrode, charge transfer characteristics, and photovoltaic parameters of DSCs is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a way of utilizing thin and conformal overlayer of titanium dioxide on an insulating mesoporous template as a photoanode for dye‐sensitized solar cells is presented. Different thicknesses of TiO2 ranging from 1 to 15 nm are deposited on the surface of the template by atomic layer deposition. This systematic study helps unraveling the minimum critical thickness of the TiO2 overlayer required to transport the photogenerated electrons efficiently. A merely 6‐nm‐thick TiO2 film on a 3‐μm mesoporous insulating substrate is shown to transport 8 mA/cm2 of photocurrent density along with ≈900 mV of open‐circuit potential when using our standard donor‐π‐acceptor sensitizer and Co(bipyridine) redox mediator.  相似文献   

3.
A solid‐state dye‐sensitized solar cell (ssDSSC) with 7.4% efficiency at 100 mW/cm2 is reported. This efficiency is one of the highest observed for N719 dye. High performance is achieved via a honeycomb‐like, organized mesoporous TiO2 photoanode with dual pores, high porosity, good interconnectivity, and excellent light scattering properties. The TiO2 photoanodes are prepared without any TiCl4 treatment via a one‐step, direct self‐assembly of hydrophilically preformed TiO2 nanocrystals and poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer as a titania source and a structure‐directing agent, respectively. Upon controlling the secondary forces between the polymer/TiO2 hybrid and the solvent by varying the amounts of HCl/H2O mixture or toluene, honeycomb‐like structures are generated to improve light scattering properties. Such multifunctional nanostructures with dual pores provide good pore‐filling of solid polymer electrolyte with large volume, enhanced light harvesting and reduced charge recombination, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analysis.  相似文献   

4.
Flat structures consisting of dense dye‐sensitized TiO2 films with various materials for dye regeneration (TiO2/dye/regeneration material) are compared. Au and PEDOT:PSS were tested as metal or metal‐like regeneration materials and compared with reference compounds, such as the redox couple I/I in solution and p‐type CuSCN. Under the exclusion of TiO2 bandgap excitation, the short‐circuit photocurrent densities for the various structures differ by less than ∼30%, suggesting comparable charge separation efficiencies. The good performance of a metallic regeneration material implies, that the frequently assumed requirement of p‐type or ‘hole conducting’ properties for the regeneration material in solid state dye solar cells is questionable. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Trap states in semiconductors usually degrade charge separation and collection in photovoltaics due to trap‐mediated nonradiative recombination. Here, it is found that perovskite can be heavily doped in low concentration with non‐ignorable broadband infrared absorption in thick films and their trap states accumulate electrons through infrared excitation and hot carrier cooling. A hybrid one‐sided abrupt perovskite/TiO2 p‐N heterojunction is demonstrated that enables partial collection of these trap‐filled charges through a tunneling process instead of detrimental recombination. The tunneling is from broadband trap states in the wide depleted p‐type perovskite, across the barrier of the narrow depleted TiO2 region (<5 nm), to the N‐type TiO2 electrode. The trap states inject carriers into TiO2 through tunneling and produce around‐unity peak external quantum efficiency, giving rise to near‐infrared photovoltaics. The near‐infrared response allows photodetecting devices to work in both diode and conductor modes. This work opens a new avenue to explore the near‐infrared application of hybrid perovskites.  相似文献   

6.
TiO2 nanotube arrays and particulate films are modified with CdS quantum dots with an aim to tune the response of the photoelectrochemical cell in the visible region. The method of successive ionic layer adsorption and reaction facilitates size control of CdS quantum dots. These CdS nanocrystals, upon excitation with visible light, inject electrons into the TiO2 nanotubes and particles and thus enable their use as photosensitive electrodes. Maximum incident photon to charge carrier efficiency (IPCE) values of 55% and 26% are observed for CdS sensitized TiO2 nanotube and nanoparticulate architectures respectively. The nearly doubling of IPCE observed with the TiO2 nanotube architecture is attributed to the increased efficiency of charge separation and transport of electrons.  相似文献   

7.
Here, the fabrication of quasi‐solid‐state TiO2/dye/poly(3‐hexylthiophene) (P3HT) solar cells is reported, in which the dyes with oleophilic thienyl groups were employed and ionic liquid (IL), 1‐ethyl‐3‐methylimidazolium (EMIm) containing lithium bis(trifluromethanesulfone)amide (Li‐TFSI) and 4‐tert‐butylpyridine (t‐BP) are assembled with dyed TiO2 surfaces. One of the devices gave a high conversion efficiency of up to 2.70% under 1 sun illumination. The excellent performance is ascribed to successful molecular self‐organization at interface of the dye molecules and P3HT, and to the efficient charge separation and diffusion acquired by introduction of the IL coupled with Li‐TFSI and t‐BP.  相似文献   

8.
A hierarchical architecture fabricated by integrating ultrafine titanium dioxide (TiO2) nanocrystals with the binder‐free macroporous graphene (PG) network foam for high‐performance energy storage is demonstrated, where mesoporous open channels connected to the PG facilitate rapid ionic transfer during the Li‐ion insertion/extraction process. Moreover, the binder‐free conductive PG network in direct contact with a current collector provides ultrafast electronic transfer. This structure leads to unprecedented cycle stability, with the capacity preserved with nearly 100% Coulombic efficiency over 10 000 Li‐ion insertion/extraction cycles. Moreover, it is proven to be very stable while cycling 10 to 100‐fold longer compared to typical electrode structures for batteries. This facilitates ultrafast charge/discharge rate capability even at a high current rate giving a very short charge/discharge time of 40 s. Density functional theory calculations also clarify that Li ions migrate into the TiO2–PG interface then stabilizing its binder‐free interface and that the Li ion diffusion occurs via a concerted mechanism, thus resulting in the ultrafast discharge/charge rate capability of the Li ions into ultrafine nanocrystals.  相似文献   

9.
Hybrid bulk heterojunction solar cells based on nanocrystalline TiO2 (nc‐TiO2) nanorods capped with trioctylphosphine oxide (TOPO) and regioregular poly(3‐hexylthiophene) (P3HT) are processed from solution and characterized in order to relate the device function (optical absorption, charge separation, and transport and photovoltaic properties) to active‐layer properties and device parameters. Annealing the blend films is found to greatly improve the polymer–metal oxide interaction at the nc‐TiO2/P3HT interface, resulting in a six‐fold increase of the charge separation yield and improved photovoltaic device performance under simulated solar illumination. In addition, the influence of the organic ligand at the nc‐TiO2 particle surface is found to be crucial for charge separation. Ligand‐exchange procedures applied on the TOPO‐capped nc‐TiO2 nanorods with an amphiphilic ruthenium‐based dye are found to further improve the charge‐separation yield at the polymer–nanocrystal interface. However, the poor photocurrents generated in the hybrid blend devices, before and after ligand exchange, suggest that transport within or between nanoparticles limits performance. By comparison with other donor–acceptor bulk heterojunction systems, we conclude that charge transport in the nc‐TiO2:P3HT blend films is limited by the presence of an intrinsic trap distribution mainly associated with the nc‐TiO2 particles.  相似文献   

10.
Hybrid dye‐sensitized solar cells are typically composed of mesoporous titania (TiO2), light‐harvesting dyes, and organic molecular hole‐transporters. Correctly matching the electronic properties of the materials is critical to ensure efficient device operation. In this study, TiO2 is synthesized in a well‐defined morphological confinement that arises from the self‐assembly of a diblock copolymer—poly(isoprene‐b‐ethylene oxide) (PI‐b‐PEO). The crystallization environment, tuned by the inorganic (TiO2 mass) to organic (polymer) ratio, is shown to be a decisive factor in determining the distribution of sub‐bandgap electronic states and the associated electronic function in solid‐state dye‐sensitized solar cells. Interestingly, the tuning of the sub‐bandgap states does not appear to strongly influence the charge transport and recombination in the devices. However, increasing the depth and breadth of the density of sub‐bandgap states correlates well with an increase in photocurrent generation, suggesting that a high density of these sub‐bandgap states is critical for efficient photo‐induced electron transfer and charge separation.  相似文献   

11.
Submicrometer‐sized (830 ± 40 nm) mesoporous TiO2 beads are used to form a scattering layer on top of a transparent, 6‐µm‐thick, nanocrystalline TiO2 film. According to the Mie theory, the large beads scatter light in the region of 600–800 nm. In addition, the mesoporous structure offers a high surface area, 89.1 m2 g?1, which allows high dye loading. The dual functions of light scattering and electrode participation make the mesoporous TiO2 beads superior candidates for the scattering layer in dye‐sensitized solar cells. A high efficiency of 8.84% was achieved with the mesoporous beads as a scattering layer, compared with an efficiency of 7.87% for the electrode with the scattering layer of 400‐nm TiO2 of similar thickness.  相似文献   

12.
TiO2‐based materials are cheap and stable choices for photoelectrochemical devices. However, the activity is still limited by the inefficient charge extraction. Here a highly conductive cable‐like bicomponent titania photoanode, consisting of reduced anatase‐coated TiO2‐B nanowires, is proposed to simultaneously establish effective electron and hole transport channels separately, which meets the requirements of electronic dynamics for efficient water splitting. A synergistic effect of charge separation from the built‐in electric field is demonstrated with this 1D TiO2‐B/anatase heterojunction, in which a high electron collection efficiency of up to 97.1% at 0.6 V versus reversible hydrogen electrode is achieved. The efficient electron collection approaching the limitation is also attributed to the large electron conducting region in the photoanode. Moreover, the O‐deficient amorphous layer is found to be more catalytic toward the oxygen evolution reaction through quantifying rate constants for charge recombination and charge transfer. It can reduce onset potential and suppress charge‐carrier recombination simultaneously, prompting surface hole collection efficiency up to 95% at 0.6 V versus reversible hydrogen electrode.  相似文献   

13.
In this study, highly mesoporous TiO2 composite photoanodes composed of functional {001}‐faceted TiO2 nanoparticles (NPs) and commercially available 20 nm TiO2 NPs are employed in efficient porphyrin‐sensitized solar cells together with cobalt polypyridyl‐based mediators. Large TiO2 NPs (approximately 50 nm) with exposed {001} facets are prepared using a fast microwave‐assisted hydrothermal (FMAH) method. These unique composite photoanodes favorably mitigate the aggregation of porphyrin on the surface of TiO2 NPs and strongly facilitate the mass transport of cobalt‐polypyridyl‐based electrolytes in the mesoporous structure. Linear sweep voltammetry reveals that the transportation of Co(polypyridyl) redox is a diffusion‐controlled process, which is highly dependent on the porosity of TiO2 films. Electrochemical impedance spectroscopy confirms that the FMAH TiO2 NPs effectively suppress the interfacial charge recombination toward [Co(bpy)3]3+ because of their oxidative {001} facets. In an optimal condition of 40 wt% addition of FMAH TiO2 NPs in the final formula, the power conversion efficiency of the dye‐sensitized cells improves from 8.28% to 9.53% under AM1.5 (1 sun) conditions.  相似文献   

14.
A facile and effective method to prepare hierarchical pine tree‐like TiO2 nanotube (PTT) arrays with an anatase phase directly grown on a transparent conducting oxide substrate via a one‐step hydrothermal reaction. The PTT arrays consist of a vertically oriented long nanotube (NT) stem and a large number of short nanorod (NR) branches. Various PTT morphologies are obtained by adjusting the water/diethylene glycol ratio. The diameter of the NTs and the size of the NR branches decreases from 300 to100 nm and from 430 to 230 nm, respectively, with increasing water content. The length of the PTT arrays could be increased up to 19 μm to significantly improve the charge transport and specific surface area. The solid‐state dye‐sensitized solar cells (ssDSSC) assembled with the 19 μm long PTT arrays exhibit an outstanding energy‐conversion efficiency of 8.0% at 100 mW/cm2, which is two‐fold higher than that of commercially available paste (4.0%) and one of the highest values obtained for N719 dye‐based ssDSSCs. The high performance is attributed to the larger surface area, improved electron transport, and reduced electrolyte/electrode interfacial resistance, resulting from the one‐dimensional, well‐aligned structure with a high porosity and large pores.  相似文献   

15.
An iodine‐free solid‐state dye‐sensitized solar cell (ssDSSC) is reported here, with 6.8% energy conversion efficiency—one of the highest yet reported for N719 dye—as a result of enhanced light harvesting from the increased transmittance of an organized mesoporous TiO2 interfacial layer and the good hole conductivity of the solid‐state‐polymerized material. The organized mesoporous TiO2 (OM‐TiO2) interfacial layer is prepared on large‐area substrates by a sol‐gel process, and is confirmed by scanning electron microscopy (SEM) and grazing incidence small‐angle X‐ray scattering (GISAXS). A 550‐nm‐thick OM‐TiO2 film coated on fluorine‐doped tin oxide (FTO) glass is highly transparent, resulting in transmittance increases of 8 and 4% compared to those of the bare FTO and conventional compact TiO2 film on FTO, respectively. The high cell performance is achieved through careful control of the electrode/hole transport material (HTM) and nanocrystalline TiO2/conductive glass interfaces, which affect the interfacial resistance of the cell. Furthermore, the transparent OM‐TiO2 film, with its high porosity and good connectivity, exhibits improved cell performance due to increased transmittance in the visible light region, decreased interfacial resistance ( Ω ), and enhanced electron lifetime ( τ ). The cell performance also depends on the conductivity of HTMs, which indicates that both highly conductive HTM and the transparent OM‐TiO2 film interface are crucial for obtaining high‐energy conversion efficiencies in I2‐free ssDSSCs.  相似文献   

16.
Photoelectrochemical (PEC) water splitting offers a promising strategy for converting solar energy to chemical fuels. Herein, a piezoelectric‐effect–enhanced full‐spectrum photoelectrocatalysis with multilayered coaxial titanium dioxide/barium titanate/silver oxide (TiO2/BTO/Ag2O) nanorod array as the photoanode is reported. The vertically grown nanorods ensure good electron conductivity, which enables fast transport of the photogenerated electrons. Significantly, the insertion of a piezoelectric BaTiO3 (BTO) nanolayer at the p‐type Ag2O and n‐type TiO2 interface created a polar charge‐stabilized electrical field. It maintains a sustainable driving force that attract the holes of TiO2 and the electrons of Ag2O, resulting in greatly increased separation and inhibited recombination of the photogenerated carriers. Furthermore, Ag2O as a narrow bandgap semiconductor has a high ultraviolet–visible–near infrared (UV–vis–NIR) photoelectrocatalytic activity. The TiO2/BTO/Ag2O, after poling, successfully achieves a prominent photocurrent density, as high as 1.8 mA cm?2 at 0.8 V versus Ag/Cl, which is about 2.6 times the TiO2 nanorod photoanode. It is the first time that piezoelectric BaTiO3 is used for tuning the interface of p‐type and n‐type photoelectrocatalyst. With the enhanced light harvesting, efficient photogenerated electron–hole pairs' separation, and rapid charge transfer at the photoanode, an excellent photoelectrocatalytic activity is realized.  相似文献   

17.
This paper firstly reports the effect of deoxyribonucleic acid (DNA) molecules extracted from chickpea and wheat plants on the injection/recombination of photogenerated electrons and sensitizing ability of dye‐sensitized solar cells (DSSCs). These high‐yield DNA molecules are applied as both linker bridging unit as well as thin tunneling barrier (TTB) at titanium dioxide (TiO2 )/dye interface, to build up high‐efficient DSSCs. With its favorable energy levels, effective linker bridging role, and double helix structure, bifunctional DNA modifier shows an efficient electron injection, suppressed charge recombination, longer electron lifetime, and higher light harvesting efficiency, which leads to higher photovoltaic performance. In particular, a photoconversion efficiency (PCE) of 9.23% is achieved by the binary chickpea and wheat DNA‐modified TiO2 (CW@TiO2) photoanode. Furthermore, time‐resolved fluorescence spectroscopy measurements confirm a better electron transfer kinetics for DNA‐modified TiO2 photoanodes, implying a higher electron transfer rate (kET). This work highlights a great contribution for the photoanodes that are linked with DNA molecule, which act as both bridging unit and TTB to control the charge recombination and injection dynamics, and hence, boost the photovoltaic performance in the DSSCs.  相似文献   

18.
In this paper, a new type of flexible working electrode, TiO2/CuI/Cu, is reported, in which the p–n junction of TiO2–CuI is introduced into dye‐sensitized solar cells (DSSCs) for the first time. The devices give a high conversion efficiency of up to 4.73% under 1 sun illumination. The excellent performance is ascribed to the existence of the p–n junction, which forms a single directional pathway for electron transport which benefits the charge separation, and improves the efficiency of the flexible solar cells as a result.  相似文献   

19.
Optical effects of the plasmonic structures and the materials effects of the metal nanomaterials have recently been individually studied for enhancing performance of organic solar cells (OSCs). Here, the effects of plasmonically induced carrier generation and enhanced carrier extraction of the carrier transport layer (i.e., plasmonic‐electrical effects) in OSCs are investigated. Enhanced charge extraction in TiO2 as a highly efficient electron transport layer by the incorporation of metal nanoparticles (NPs) is proposed and demonstrated. Efficient device performance is demonstrated by using Au NPs incorporated TiO2 at a plasmonic wavelength (560–600 nm), which is far longer than the originally necessary UV light. By optimizing the concentration ratio of the Au NPs in the NP‐TiO2 composite, the performances of OSCs with various polymer active layers are enhanced and efficiency of 8.74% is reached. An integrated optical and electrical model, which takes into account plasmonic‐induced hot carrier tunneling probability and extraction barrier between TiO2 and the active layer, is introduced. The enhanced charge extraction under plasmonic illumination is attributed to the strong charge injection of plasmonically excited electrons from NPs into TiO2. The mechanism favors trap filling in TiO2, which can lower the effective energy barrier and facilitate carrier transport in OSCs.  相似文献   

20.
Titania nanoshells with an external diameter of 10–30 nm and a wall thickness of 3–5 nm were prepared by dissolving the silver cores of Ag@TiO2 nanoparticles in a concentrated solution of ammonium hydroxide. The nanoshells were assembled layer‐by‐layer (LBL), with negatively charged poly(acrylic acid) (PAA) to produce coatings with a network of voids and channels in the interior of the film. The diameter of the channels in the titania shells was comparable to the thickness of the electrical double layer in porous matter (0.3–30 nm). The prepared nanoparticulate films demonstrated strong ion‐sieving properties due to the exclusion of some ions from the diffuse region of the electrical double layer. The permeation of ions could be tuned effectively by the pH and ionic strength of a solution between “open” and “closed” states. The ion‐separation effect was utilized for the selective determination of one of the most important neurotransmitters, dopamine, on a background of ascorbic acid. Under physiological conditions, the negative charge on the surface of TiO2 facilitated the permeation of positively charged dopamine through the LBL film to the electrode, preventing the access of the negatively charged ascorbic acid. The deposition of the nanoshell/polyelectrolyte film resulted in a significant improvement to the selectivity of dopamine determination. The prepared nanoshell films were also found to be compatible with nervous tissue secreting dopamine. Although the obtained data demonstrated the potential of TiO2 LBL films for implantable biomedical devices for nerve tissue monitoring, the problem of electrode poisoning by the by‐products of dopamine reduction has yet to be resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号