首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Herein, a highly active and stable MoS2 electrocatalyst is supported on reduced graphene oxide‐modified carbon nanotube/polyimide (PI/CNT‐RGO) film for hydrogen evolution reaction (HER). The PI/CNT‐RGO film allows the intimate growth of MoS2 nanoparticles on its surface. The nanosize and high dispersion of MoS2 nanoparticles provide a vast amount of available edge sites and the coupling of RGO and MoS2 enhances the electron transfer between the edge sites and the substrate, greatly improving the HER activity of PI/CNT‐RGO‐MoS2 film. The MoS2 with a smaller loading less than 0.04 mg cm?2 on the PI/CNT‐RGO film exhibits excellent HER activities with a low overpotential of 0.09 V and large current densities, as well as good stability. The Tafel slope of 61 mV dec?1 reveals the Volmer–Heyrovsky mechanism for HER. Thus, this work paves a potential pathway for designing efficient MoS2‐based electrocatalysts for HER.  相似文献   

2.
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) along with hydrogen evolution reaction (HER) have been considered critical processes for electrochemical energy conversion and storage through metal‐air battery, fuel cell, and water electrolyzer technologies. Here, a new class of multifunctional electrocatalysts consisting of dominant metallic Ni or Co with small fraction of their oxides anchored onto nitrogen‐doped reduced graphene oxide (rGO) including Co‐CoO/N‐rGO and Ni‐NiO/N‐rGO are prepared via a pyrolysis of graphene oxide and cobalt or nickel salts. Ni‐NiO/N‐rGO shows the higher electrocatalytic activity for the OER in 0.1 m KOH with a low overpotential of 0.24 V at a current density of 10 mA cm?2, which is superior to that of the commercial IrO2. In addition, it exhibits remarkable activity for the HER, demonstrating a low overpotential of 0.16 V at a current density of 20 mA cm?2 in 1.0 m KOH. Apart from similar HER activity to the Ni‐based catalyst, Co‐CoO/N‐rGO displays the higher activity for the ORR, comparable to Pt/C in zinc‐air batteries. This work provides a new avenue for the development of multifunctional electrocatalysts with optimal catalytic activity by varying transition metals (Ni or Co) for these highly demanded electrochemical energy technologies.  相似文献   

3.
Searching the high‐efficient, stable, and earth‐abundant electrocatalysts to replace the precious noble metals holds the promise for practical utilizations of hydrogen and oxygen evolution reactions (HER and OER). Here, a series of highly active and robust Co‐doped nickel phosphides (Ni2?xCoxP) catalysts and their hybrids with reduced graphene oxide (rGO) are developed as bifunctional catalysts for both HER and OER. The Co‐doping in Ni2P and their hybridization with rGO effectively regulate the catalytic activity of the surface active sites, accelerate the charge transfer, and boost their superior catalytic activity. Density functional theory calculations show that the Co‐doped catalysts deliver the moderate trapping of atomic hydrogen and facile desorption of the generated H2 due to the H‐poisoned surface active sites of Ni2?xCoxP under the real catalytic process. Electrochemical measurements reveal the high HER efficiency and durability of the NiCoP/rGO hybrids in electrolytes with pH 0–14. Coupled with the remarkable and robust OER activity of the NiCoP/rGO hybrids, the practical utilization of the NiCoP/rGO‖NiCoP/rGO for overall water splitting yields a catalytic current density of 10 mA cm?2 at 1.59 V over 75 h without an obvious degradation and Faradic efficiency of ≈100% in a two‐electrode configuration and 1.0 m KOH.  相似文献   

4.
Gallium selenide (GaSe) is a layered compound, which has been exploited in nonlinear optical applications and photodetectors due to its anisotropic structure and pseudodirect optical gap. Theoretical studies predict that its 2D form is a potential photocatalyst for water splitting reactions. Herein, the photoelectrochemical (PEC) characterization of GaSe nanoflakes (single‐/few‐layer flakes), produced via liquid phase exfoliation, for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in both acidic and alkaline media is reported. In 0.5 m H2SO4, the GaSe photoelectrodes display the best PEC performance, corresponding to a ratiometric power‐saved metric for HER (Φsaved,HER) of 0.09% and a ratiometric power‐saved metric for OER (Φsaved,OER) of 0.25%. When used as PEC‐type photodetectors, GaSe photoelectrodes show a responsivity of ≈0.16 A W?1 upon 455 nm illumination at a light intensity of 63.5 µW cm?2 and applied potential of ?0.3 V versus reversible hydrogen electrode (RHE). Stability tests of GaSe photodetectors demonstrated a durable operation over tens of cathodic linear sweep voltammetry scans in 0.5 m H2SO4 for HER. In contrast, degradation of photoelectrodes occurred in both alkaline and anodic operation due to the highly oxidizing environment and O2‐induced (photo)oxidation effects. The results provide new insight into the PEC properties of GaSe nanoflakes for their exploitation in photoelectrocatalysis, PEC‐type photodetectors, and (bio)sensors.  相似文献   

5.
Molybdenum disulfide (MoS2) has been considered as a promising alternative to platinum (Pt)‐based catalyst for hydrogen evolution reaction (HER) due to its low cost and high catalytic activity. However, stable 2H phase of MoS2 (2H‐MoS2) exhibits low catalytic activity in HER due to the inert basal plane and S‐edge. Thus, to exploit the basal plane and S‐edge for additional electrocatalytic activity, a facile strategy is developed to prepare P‐doped 2H‐MoS2 film on conductive substrate via low‐temperature heat treatment. Due to the inherent difficulty of P‐doping into MoS2 crystal structure, oxygen (O)‐doping is utilized to aid the P‐doping process, as supported by the first‐principles calculations. Interestingly, P‐doping could dramatically reduce Mo valence charge, which results in the functionalization of the inert MoS2 basal plane and S‐edge. In agreement with simulation results, P‐doped 2H‐MoS2 electrode exhibits enhanced catalytic performance in H2 generation with low onset potential (130 mV) and small Tafel slope of 49 mV dec?1. The enhanced catalytic performance arises from the synergistic effect of the activated basal plane, S‐edge, and Mo‐edge sites, leading to favorable hydrogen adsorption energies. Most importantly, improved cyclic stability is achieved, which reveals chemically inert properties of P‐doped 2H‐MoS2 in acidic electrolyte.  相似文献   

6.
Electrochemical water splitting is very attractive for green fuel energy production, but the development of active, stable, and earth‐abundant catalysts for the hydrogen evolution reaction (HER) remains a major challenge. Here, core–shell nanostructured architectures are used to design and fabricate efficient and stable HER catalysts from earth‐abundant components. Vertically oriented quasi‐2D core–shell MoO2/MoSe2 nanosheet arrays are grown onto insulating (SiO2/Si wafer) or conductive (carbon cloth) substrates. This core–shell nanostructure array architecture exhibits synergistic properties to create superior HER performance, where high density structural defects and disorders on the shell generated by a large crystalline mismatch of MoO2 and MoSe2 act as multiple active sites for HER, and the metallic MoO2 core facilitates charge transport for proton reduction while the vertical nanosheet arrays ensure fully exposed active sites toward electrolytes. As a HER catalyst, this electrode exhibits a low Tafel slope of 49.1 mV dec?1, a small onset potential of 63 mV, and an ultralow charge transfer resistance (Rct) of 16.6 Ω at an overpotential of 300 mV with a long cycling durability for up to 8 h. This work suggests that a quasi 2D core–shell nanostructure combined with a vertical array microstructure is a promising strategy for efficient water splitting electrocatalysts with scale‐up potential.  相似文献   

7.
Making highly efficient catalysts for an overall ?water splitting reaction is vitally important to bring solar/electrical‐to‐hydrogen energy conversion processes into reality. Herein, the synthesis of ultrathin nanosheet‐based, hollow MoOx/Ni3S2 composite microsphere catalysts on nickel foam, using ammonium molybdate as a precursor and the triblock copolymer pluronic P123 as a structure‐directing agent is reported. It is also shown that the resulting materials can serve as bifunctional, non‐noble metal electrocatalysts with high activity and stability for the hydrogen evolution reaction (HER) as well as the oxygen evolution reaction (OER). Thanks to their unique structural features, the materials give an impressive water‐splitting current density of 10 mA cm?2 at ≈1.45 V with remarkable durability for >100 h when used as catalysts both at the cathode and the anode sides of an alkaline electrolyzer. This performance for an overall water splitting reaction is better than even those obtained with an electrolyzer consisting of noble metal‐based Pt/C and IrOx/C catalytic couple—the benchmark catalysts for HER and OER, respectively.  相似文献   

8.
Vertically aligned WS2 (VAWS2) nanosheet films are prepared using a lithium based anodization electrolyte to fabricate WO3 films followed by sulfurization. The VAWS2 synthesized here is self‐organized as a conformal structure to expose active edge sites for water splitting. These vertically aligned nanosheets are composed of exfoliated WS2 to provide abundant active edges for catalytic reactions. Hydrogen evolution activity of the VAWS2 is demonstrated to show high catalytic current, low onset overpotential and small Tafel slope. By certain measures, this VAWS2 nanosheet film outperforms some of the state‐of‐the‐art hydrogen evolution reaction (HER) catalysts, which opens up a new pathway to simply and scalably fabricate high‐performance water electrolysis catalysts.  相似文献   

9.
Molybdenum phosphide (MoP) has received increasing attention due to its high catalytic activity in hydrogen evolution reaction (HER). However, it remains difficult to construct well‐defined MoP nanostructures with large density of active sites and high intrinsic activity. Here, a facile and general method is reported to synthesize an MoP/carbon nanotube (CNT) hybrid featuring small‐sized and well‐crystallized MoP nanoparticles uniformly coated on the sidewalls of multiwalled CNT. The MoP/CNT hybrid exhibits impressive HER activities in pH‐universal electrolytes, and requires the overpotentials as low as 83, 102, and 86 mV to achieve a cathodic current density of 10 mA cm?2 in acidic 0.5 m H2SO4, neutral 1 m phosphate buffer solution, and alkaline 1 m KOH electrolytes, respectively. It is found that the crystallinity of MoP has significant influence on HER activity. This study provides a new design strategy to construct MoP nanostructures for optimizing its catalytic performance.  相似文献   

10.
Development of electrocatalysts for hydrogen evolution reaction (HER) with low overpotential and robust stability remains as one of the most serious challenges for energy conversion. Herein, a serviceable and highly active HER electrocatalyst with multilevel porous structure (Co‐Co2P nanoparticles@N, P doped carbon/reduced graphene oxides (Co‐Co2P@NPC/rGO)) is synthesized by Saccharomycete cells as template to adsorb metal ions and graphene nanosheets as separating agent to prevent aggregation, which is composed of Co‐Co2P nanoparticles with size of ≈104.7 nm embedded into carbonized Saccharomycete cells. The Saccharomycete cells provide not only carbon source to produce carbon shells, but also phosphorus source to prepare metal phosphides. In order to realize the practicability and permanent stability, the binderless and 3D electrodes composed of obtained Co‐Co2P@NPC/rGO powder are constructed, which possess a low overpotential of 61.5 mV (achieve 10 mA cm?2) and the high current density with extraordinary catalytic stability (1000 mA cm?2 for 20 h) in 0.5 m H2SO4. The preparation process is appropriate for synthesizing various metal or metal phosphide@carbon electrocatalysts. This work may provide a biological template method for rational design and fabrication of various metals or metal compounds@carbon 3D electrodes with promising applications in energy conversion and storage.  相似文献   

11.
Solar‐driven water splitting is a promising approach for renewable energy, where the development of efficient and stable bifunctional electrocatalysts for simultaneously producing hydrogen and oxygen is still challenging. Herein, combined with the hydrogen evolution reaction (HER) activity of a copper(I) complex and oxygen evolution reaction (OER) activity of cobalt‐based oxides, a type of 1D copper‐cobalt hybrid oxide nanowires (CuCoO‐NWs) is developed via a facile two‐step growth‐conversion process toward a bifunctional water splitting catalyst. The CuCoO‐NWs exhibit excellent catalytic performances for both HER and OER in the same basic electrolyte, with optimized low onset overpotentials and high current densities. The efficient HER activity is ascribed to the formation of Cu2O, while the activity for OER is primarily enabled by Co‐based oxides and abundant oxygen vacancies. The CuCoO‐NWs allow for the assembly of a water electrolyzer with strong alkaline media, with a current density of 10 mA cm?2 at 1.61 V. Further combination with a commercial silicon photovoltaic allows the direct use of solar energy for spontaneous water splitting with excellent stability for over 72 h, suggesting the potential as a promising bifunctional electrocatalyst for efficient solar‐driven water splitting.  相似文献   

12.
Organic polymers have attracted much attention in the field of energy conversion owing to their excellent tailoring ability via heterometal incorporation and/or functionalization. Herein, a novel pincer complex-bridged porphyrin polymer is synthesized using Cu-porphyrin (CuPor) and Ru-N′NN′-pincer complex (RuN3) as monomers. The resultant CuPor-RuN3 polymer delivers robust electrocatalytic hydrogen evolution reaction (HER) performance with outstanding durability and ultralow overpotentials of 73 and 114 mV at a current density of 10 mA cm-2 in acidic and alkaline media, respectively. Moreover, the CuPor-RuN3 polymer displays great potential to fabricate photoelectrochemical (PEC) cells with a BiVO4 photoanode, where the additional photoinduced electrons from CuPor-RuN3 endow the BiVO4||CuPor-RuN3 PEC cell with much better activity for overall water splitting than the BiVO4||Pt/C one, demonstrating that CuPor-RuN3 would be a promising (photo)electrocatalyst to replace the benchmark Pt/C. The experimental and theoretical studies reveal that the Cu/Ru heterobimetallic centers in the polymer not only enhance the inherent electron transfer from Cu sites to Ru ones that serve as single-atom catalytic sites (Ru-N3), but also efficiently regulate the electronic property of the Ru-N3 sites, and thus boosting (photo)electrocatalytic HER activity. The proposed strategy opens a new avenue to fabricate porphyrin-based polymers with heteromultimetallic centers as effective HER (photo)electrocatalysts.  相似文献   

13.
The first utilization of nitrogen‐doped graphdiyne (NGDY) as an efficient catalytic promoter for hydrogen evolution reaction (HER) is reported. X‐ray powder diffraction and X‐ray photoelectron spectroscopy studies indicate the presence of strong interactions between NGDY and MoS2, which should effectively facilitate the charge transport behavior and improvement of the HER kinetics. The creative hybridization of MoS2 and NGDY endows such heterostructure with structural and compositional advantages for boosting the catalytic activity (low overpotential of 186 mV at 10 mA cm?2 and Tafel slope of 63 mV dec?1) and extraordinary stability (higher than all reported MoS2‐based materials and even better than that of commercial Pt and almost all benchmarked electrocatalysts). All of the results not only demonstrate that NGDY can be used as an effective catalytic promoter for hydrogen production, but also provide new strategy for fabricating efficient water‐splitting electrodes.  相似文献   

14.
The introduction of composite components to construct heterointerfaces is an important way to improve the electrocatalytic performance of materials. However, selecting appropriate components to accelerate the elementary reaction rates of the hydrogen evolution reaction (HER) in alkaline media is still in challenge. Here, a Ni-CeF3-VN multi-component material is successfully constructed, which exhibits excellent HER catalytic activity (33 mV at 10 mA cm−2). The experimental and computational results show that the Ni-VN and Ni-CeF3 dual heterointerfaces can effectively promote the transfer of OH adsorption site from Ni to VN and optimize the adsorption energy of intermediate H respectively, which together accelerate the rate of the multi-step hydrogen evolution reaction in alkaline solution and thus lead to a significantly improved HER performance compared to the pure Ni. Furthermore, the solar to hydrogen (STH) efficiency can reach 10.34%. This work provides an effective guide for the design of high-efficiency multicomponent materials in the future.  相似文献   

15.
MoSe2 as a typical transition metal dichalcogenide holds great potential for energy storage and catalysis but its performance is largely limited by its poor conductivity. Bi2Se3 nanosheets, a kind of topological insulators, possess gapless edges on boundary and show metallic character on surface. According to the principle of complementary, a novel integrated quasiplane structure of MoSe2/Bi2Se3 hybrids is designed with artistic heteronanostructures via a hot injection in colloidal system. Interestingly, the heteronanostructures are typically constituted by single‐layer Bi2Se3 hexagonal nanoplates evenly enclosed by small ultrathin hierarchical MoSe2 nanosheets on the whole surfaces. X‐ray photoelectron spectroscopy investigations suggest obvious electron transfer from Bi2Se3 to MoSe2, which can help to enhance the conductivity of the hybrid electrode. Especially, schematic energy band diagrams derived from ultraviolet photoelectron spectroscopy studies indicate that Bi2Se3 has higher EF and smaller Φ than MoSe2, further confirming the electronic modulation between Bi2Se3 and MoSe2, where Bi2Se3 serves as an excellent substrate to provide electrons and acts as channels for high‐rate transition. The MoSe2/Bi2Se3 hybrids demonstrating a low onset potential, small Tafel slope, high current density, and long‐term stability suggest excellent hydrogen evolution reaction activity, whereas a high specific capacitance, satisfactory rate capability, and rapid ions diffusion indicate enhanced supercapacitor performance.  相似文献   

16.
An efficient self‐standing 3D hydrogen evolution cathode has been developed by coating nickel cobaltite (NiCo2O4)/CuS nanowire heterostructures on a carbon fiber paper (CFP). The obtained CFP/NiCo2O4/CuS electrode shows exceptional hydrogen evolution reaction (HER) performance and excellent durability in acidic conditions. Remarkably, as an integrated 3D hydrogen‐evolving cathode operating in acidic electrolytes, CFP/NiCo2O4/CuS maintains its activity more than 50 h and exhibits an onset overpotential of 31.1 mV, an exchange current density of 0.246 mA cm?2, and a Tafel slope of 41 mV dec?1. Compared to other non‐Pt electrocatalysts reported to date, CFP/NiCo2O4/CuS exhibits the highest HER activity and can be used in HER to produce H2 with nearly quantitative faradaic yield in acidic aqueous media with stable activity. Furthermore, by using CFP/NiCo2O4/CuS as a self‐standing electrode in a water electrolyzer, a current density of 18 mA cm?2 can be achieved at a voltage of 1.5 V which can be driven by a single‐cell battery. This strategy provides an effective, durable, and non‐Pt electrode for water splitting and hydrogen generation.  相似文献   

17.
Hydrogen evolution electrocatalysts can achieve sustainable hydrogen production via electrocatalytic water splitting; however, designing highly active and stable noble‐metal‐free hydrogen evolution electrocatalysts that perform as efficiently as Pt catalysts over a wide pH range is a challenging task. Herein, a new 2D cobalt phosphide/nickelcobalt phosphide (CoP/NiCoP) hybrid nanosheet network is proposed, supported on an N‐doped carbon (NC) matrix as a highly efficient and durable pH‐universal hydrogen evolution reaction (HER) electrocatalyst. It is derived from topological transformation of corresponding layer double hydroxides and graphitic carbon nitride. This 2D CoP/NiCoP/NC catalyst exhibits versatile HER electroactivity with very low overpotentials of 75, 60, and 123 mV in 1 m KOH, 0.5 m H2SO4, and 1 m PBS electrolytes, respectively, delivering a current density of 10 mA cm?2 for HER. Such impressive HER performance of the hybrid electrocatalyst is mainly attributed to the collective effects of electronic structure engineering, strong interfacial coupling between CoP and NiCoP in heterojunction, an enlarged surface area/exposed catalytic active sites due to the 2D morphology, and conductive NC support. This method is believed to provide a basis for the development of efficient 2D electrode materials with various electrochemical applications.  相似文献   

18.
Engineering of controlled hybrid nanocomposites creates one of the most exciting applications in the fields of energy materials and environmental science. The rational design and in situ synthesis of hierarchical porous nanocomposite sheets of nitrogen‐doped graphene oxide (NGO) and nickel sulfide (Ni7S6) derived from a hybrid of a well‐known nickel‐based metal‐organic framework (NiMOF‐74) using thiourea as a sulfur source are reported here. The nanoporous NGO/MOF composite is prepared through a solvothermal process in which Ni(II) metal centers of the MOF structure are chelated with nitrogen and oxygen functional groups of NGO. NGO/Ni7S6 exhibits bifunctional activity, capable of catalyzing both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with excellent stability in alkaline electrolytes, due to its high surface area, high pore volume, and tailored reaction interface enabling the availability of active nickel sites, mass transport, and gas release. Depending on the nitrogen doping level, the properties of graphene oxide can be tuned toward, e.g., enhanced stability of the composite compared to commonly used RuO2 under OER conditions. Hence, this work opens the door for the development of effective OER/HER electrocatalysts based on hierarchical porous graphene oxide composites with metal chalcogenides, which may replace expensive commercial catalysts such as RuO2 and IrO2.  相似文献   

19.
A synthetic route toward hybrid MoS2‐based materials that combines the 2D bonding of MoS2 with 3D networking of aliphatic carbon chains is devised, leading to a film with enhanced electrocatalytic activity. The hybrid inorganic–organic thin films are synthesized by combining atomic layer deposition (ALD) with molecular layer deposition (MLD) using the precursors molybdenum hexacarbonyl and 1,2‐ethanedithiol and characterized by in situ Fourier transform infrared spectroscopy, and the resultant material properties are probed by X‐ray photoelectron spectroscopy, Raman spectroscopy, and grazing incidence X‐ray diffraction. The process exhibits a growth rate of 1.3 Å per cycle, with an ALD/MLD temperature window of 155–175 °C. The hybrid films are moderately stable for about a week in ambient conditions, smooth (σRMS ≈ 5 Å for films 60 Å thick) and uniform, with densities ranging from 2.2–2.5 g cm?3. The material is both optically transparent and catalytically active for the hydrogen evolution reaction (HER), with an overpotential (294 mV at ?10 mA cm?2) superior to that of planar MoS2. The enhancement in catalytic activity is attributed to the incorporation of organic chains into MoS2, which induces a morphological change during electrochemical testing that increases surface area and yields high activity HER catalysts without the need for deliberate nanostructuring.  相似文献   

20.
A 3D hierarchical porous catalyst architecture based on earth abundant metals Ni, Fe, and Co has been fabricated through a facile hydrothermal and electrodeposition method for efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The electrode is comprised of three levels of porous structures including the bottom supermacroporous Ni foam (≈500 μm) substrate, the intermediate layer of vertically aligned macroporous NiCo2O4 nanoflakes (≈500 nm), and the topmost NiFe(oxy)hydroxide mesoporous nanosheets (≈5 nm). This hierarchical architecture is binder‐free and beneficial for exposing catalytic active sites, enhancing mass transport and accelerating dissipation of gases generated during water electrolysis. Serving as an anode catalyst, the designed hierarchical electrode displays excellent OER catalytic activity with an overpotential of 340 mV to achieve a high current density of 1200 mA cm?2. Serving as a cathode catalyst, the catalyst exhibits excellent performance toward HER with a moderate overpotential of 105 mV to deliver a current density of 10 mA cm?2. Serving as both anode and cathode catalysts in a two‐electrode water electrolysis system, the designed electrode only requires a potential of 1.67 V to deliver a current density of 10 mA cm?2 and exhibits excellent durability in prolonged bulk alkaline water electrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号