首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorescent organic light‐emitting diodes (OLEDs) with ultimate efficiency in terms of the external quantum efficiency (EQE), driving voltage, and efficiency roll‐off are reported, making use of an exciplex‐forming co‐host. This exciplex‐forming co‐host system enables efficient singlet and triplet energy transfers from the host exciplex to the phosphorescent dopant because the singlet and triplet energies of the exciplex are almost identical. In addition, the system has low probability of direct trapping of charges at the dopant molecules and no charge‐injection barrier from the charge‐transport layers to the emitting layer. By combining all these factors, the OLEDs achieve a low turn‐on voltage of 2.4 V, a very high EQE of 29.1% and a very high power efficiency of 124 lm W?1. In addition, the OLEDs achieve an extremely low efficiency roll‐off. The EQE of the optimized OLED is maintained at more than 27.8%, up to 10 000 cd m?2.  相似文献   

2.
Several new solution‐processable organic semiconductors based on dendritic oligoquinolines were synthesized and were used as electron‐transport and hole‐blocking materials to realize highly efficient blue phosphorescent organic light‐emitting diodes (PhOLEDs). Various substitutions on the quinoline rings while keeping the central meta‐linked tris(quinolin‐2‐yl)benzene gave electron transport materials that combined wide energy gap (>3.3 eV), moderate electron affinity (2.55‐2.8 eV), and deep HOMO energy level (<‐6.08 eV) with electron mobility as high as 3.3 × 10?3 cm2 V?1 s?1. Polymer‐based PhOLEDs with iridium (III) bis(4,6‐(di‐fluorophenyl)pyridinato‐N,C2′)picolinate (FIrpic) blue triplet emitter and solution‐processed oligoquinolines as the electron‐transport layers (ETLs) gave luminous efficiency of 30.5 cd A?1 at a brightness of 4130 cd m?2 with an external quantum efficiency (EQE) of 16.0%. Blue PhOLEDs incorporating solution‐deposited ETLs were over two‐fold more efficient than those containing vacuum‐deposited ETLs. Atomic force microscopy imaging shows that the solution‐deposited oligoquinoline ETLs formed vertically oriented nanopillars and rough surfaces that enable good ETL/cathode contacts, eliminating the need for cathode interfacial materials (LiF, CsF). These solution‐processed blue PhOLEDs have the highest performance observed to date in polymer‐based blue PhOLEDs.  相似文献   

3.
Bimolecular and trap‐assisted recombination mechanisms are investigated in small molecule‐based phosphorescent organic light emitting diodes (PhOLEDs) using the current?voltage?luminance characteristics in the diffusion current region, along with transient electroluminescence and capacitance measurements. Two different PhOLEDs, one with a single host, 4,4′‐Bis(carbazol‐9‐yl)biphenyl, and the other with an exciplex‐forming co‐host, are studied. Trap‐assisted recombination with a large number of trapped charges is dominant in the PhOLED with the single host because of the large energy gap between the host and the dopant state. In contrast, bimolecular Langevin recombination is dominant in the PhOLED with the exciplex forming co‐host, where a phosphorescent dye is doped in the co‐host. As a result, the accumulated charge density is lower in the co‐host system than in the single host emission layer, leading to high efficiency that approaches the theoretical limit, with an extremely low efficiency roll‐off.  相似文献   

4.
A group of bipyridine/carbazole hybrid compounds, namely m‐BPyDCz, p‐BPyDCz, m‐BPySCz, and p‐BPySCz, are designed and developed as host materials for phosphorescent organic light‐emitting diodes (PhOLEDs). By tuning the p/n molar ratio and para‐/meta‐ substitution style, scorpion‐, Y‐, Z‐, and L‐shape molecular conformations are generated. In virtue of intermolecular hydrogen bonds and π–π interaction, these compounds form different molecular packing patterns in their single crystals. Particularly the Z‐shaped m‐BPySCz achieves 3D gridding packing with regular and ordered carbazole and pyridine columns as carrier hoping channels and larger intermolecular distance, which not only guarantees charge balance but also suppresses exciton quenching. Consequently the m‐BPySCz hosted sky‐blue and green PhOLEDs exhibit high external quantum efficiencies of 27.3% and 28.0% and low efficiency roll‐offs of 8.1% (at brightness of 1000 cd m?2 for blue) and 14.3% (at 10000 cd m?2 for green), all superior to other analogs and many reported host materials. The excellent performance of m‐BPySCz versus its lowest molecular weight and lowest amorphous stability manifests that the molecular packing style of host material dominates to determine the overall performance of PhOLEDs and the 3D gridding packing mode of zig‐zag conformation may be one ideal strategy to eliminate efficiency roll‐off in PhOLEDs.  相似文献   

5.
An exciplex forming co‐host is introduced in order to fabricate orange organic light‐emitting diodes (OLEDs) with high efficiency, low driving voltage and an extremely low efficiency roll‐off, by the co‐doping of green and red emitting phosphorescence dyes in the host. The orange OLEDs achieves a low turn‐on voltage of 2.4 V, which is equivalent to the triplet energy gap of the phosphorescent‐green emitting dopant, and a very high external quantum efficiency (EQE) of 25.0%. Moreover, the OLEDs show low efficiency roll‐off with an EQE of over 21% at 10 000 cdm?2. The device displays a very good orange color (CIE of (0.501, 0.478) at 1000 cdm?2) with very little color shift with increasing luminance. The transient electroluminescence of the OLEDs indicate that both energy transfer and direct charge trapping takes place in the devices.  相似文献   

6.
A new class of charge neutral, strongly luminescent cyclometalated platinum(II) complexes supported by dianionic tetradentate ligand are synthesized. One of these platinum(II) complexes, Y‐Pt , displays a high photoluminescence quantum yield of 86% and electroluminescence efficacy (ηpower) of up to 52 lm W?1, and is utilized as a yellow phosphorescent dopant in the fabrication of white organic light‐emitting devices (WOLEDs). WOLEDs based on conventional structures with yellow emission from Y‐Pt in combination with blue emission from bis(4,6‐difluorophenyl‐pyridinato‐N,C2′) (picolinate) iridium(III) (FIrpic) show a total ηpower of up to 31 lm W?1. A two‐fold increase in ηpower by utilizing a modified WOLED structure comprising of a composite blue host is realized. With this modified device structure, the total ηpower and driving voltage at a luminance of 1000 cd m?2 can be improved to 61 lm W?1 and 7.5 V (i.e., 10 V for control devices). The performance improvement is attributed to an effectively broaden exciton formation‐recombination zone and alleviation of localized exciton accumulation within the FIrpic‐doped composite host for reduced triplet‐triplet annihilation, yielding blue light‐emission with enhanced intensity. The modified device structure can also adopt a higher concentration of Y‐Pt towards its optimal value, leading to WOLEDs with high efficiency.  相似文献   

7.
A series of pyridine‐containing electron‐transport materials are developed as an electron‐transport layer for the FIrpic‐based blue phosphorescent organic light‐emitting diodes. Their energy levels can be tuned by the introduction of pyridine rings in the framework and on the periphery of the molecules. Significantly reduced operating voltage is achieved without compromising external quantum efficiency by solely tuning the nitrogen atom orientations of those pyidine rings. Unprecedented low operating voltages of 2.61 and 3.03 V are realized at 1 and 100 cd m?2, giving ever highest power efficiency values of 65.8 and 59.7 lm W?1, respectively. In addition, the operating voltages at 100 cd m?2 can be further reduced to 2.70 V by using a host material with a small singlet‐triplet exchange energy, and the threshold voltage for electroluminescence can even be 0.2–0.3 V lower than the theoretical minimum value of the photon energy divided by electron charge. Aside from the reduced operating voltage, a further reduced roll‐off in efficiency is also achieved by the combination of an appropriate host material.  相似文献   

8.
High‐performance, blue, phosphorescent organic light‐emitting diodes (PhOLEDs) are achieved by orthogonal solution‐processing of small‐molecule electron‐transport material doped with an alkali metal salt, including cesium carbonate (Cs2CO3) or lithium carbonate (Li2CO3). Blue PhOLEDs with solution‐processed 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) electron‐transport layer (ETL) doped with Cs2CO3 show a luminous efficiency (LE) of 35.1 cd A?1 with an external quantum efficiency (EQE) of 17.9%, which are two‐fold higher efficiency than a BPhen ETL without a dopant. These solution‐processed blue PhOLEDs are much superior compared to devices with vacuum‐deposited BPhen ETL/alkali metal salt cathode interfacial layer. Blue PhOLEDs with solution‐processed 1,3,5‐tris(m‐pyrid‐3‐yl‐phenyl)benzene (TmPyPB) ETL doped with Cs2CO3 have a luminous efficiency of 37.7 cd A?1 with an EQE of 19.0%, which is the best performance observed to date in all‐solution‐processed blue PhOLEDs. The results show that a small‐molecule ETL doped with alkali metal salt can be realized by solution‐processing to enhance overall device performance. The solution‐processed metal salt‐doped ETLs exhibit a unique rough surface morphology that facilitates enhanced charge‐injection and transport in the devices. These results demonstrate that orthogonal solution‐processing of metal salt‐doped electron‐transport materials is a promising strategy for applications in various solution‐processed multilayered organic electronic devices.  相似文献   

9.
A series of tetraarylsilane compounds, namely p‐BISiTPA ( 1 ), m‐BISiTPA ( 2 ), p‐OXDSiTPA ( 3 ), m‐OXDSiTPA ( 4 ), are designed and synthesized by incorporating electron‐donating arylamine and electron‐accepting benzimidazole or oxadiazole into one molecule via a silicon‐bridge linkage mode. Their thermal, photophysical and electrochemical properties can be finely tuned through the different groups and linking topologies. The para‐disposition compounds 1 and 3 display higher glass transition temperatures, slightly lower HOMO levels and triplet energies than their meta‐disposition isomers 2 and 4 , respectively. The silicon‐interrupted conjugation of the electron‐donating and electron‐accepting segments gives these materials the following advantages: i) relative high triplet energies in the range of 2.69–2.73 eV; ii) HOMO/LUMO levels of the compounds mainly depend on the electron‐donating and electron‐accepting groups, respectively; iii) bipolar transporting feature as indicated by hole‐only and electron‐only devices. These advantages make these materials ideal universal hosts for multicolor phosphorescent OLEDs. 1 and 3 have been demonstrated as universal hosts for blue, green, orange and white electrophosphorescence, exhibiting high efficiencies and low efficiency roll‐off. For example, the devices hosted by 1 achieve maximum external quantum efficiencies of 16.1% for blue, 22.7% for green, 20.5% for orange, and 19.1% for white electrophosphorescence. Furthermore, the external quantum efficiencies are still as high as 14.2% for blue, 22.4% for green, 18.9% for orange, and 17.4% for white electrophosphorescence at a high luminance of 1000 cd m?2. The two‐color, all‐phosphor white device hosted by 3 acquires a maximum current efficiency of 51.4 cd A?1, and a maximum power efficiency of 51.9 lm W?1. These values are among the highest for single emitting layer white PhOLEDs reported till now.  相似文献   

10.
By attaching a bulky, inductively electron‐withdrawing trifluoromethyl (CF3) group on the pyridyl ring of the rigid 2‐[3‐ (N‐phenylcarbazolyl)]pyridine cyclometalated ligand, we successfully synthesized a new heteroleptic orange‐emitting phosphorescent iridium(III) complex [Ir( L 1 )2(acac)] 1 ( HL 1 = 5‐trifluoromethyl‐2‐[3‐(N‐phenylcarbazolyl)]pyridine, Hacac = acetylacetone) in good yield. The structural and electronic properties of 1 were examined by X‐ray crystallography and time‐dependent DFT calculations. The influence of CF3 substituents on the optical, electrochemical and electroluminescence (EL) properties of 1 were studied. We note that incorporation of the carbazolyl unit facilitates the hole‐transporting ability of the complex, and more importantly, attachment of CF3 group provides an access to a highly efficient electrophosphor for the fabrication of orange phosphorescent organic light‐emitting diodes (OLEDs) with outstanding device performance. These orange OLEDs can produce a maximum current efficiency of ~40 cd A?1, corresponding to an external quantum efficiency of ~12% ph/el (photons per electron) and a power efficiency of ~24 lm W?1. Remarkably, high‐performance simple two‐element white OLEDs (WOLEDs) with excellent color stability can be fabricated using an orange triplet‐harvesting emitter 1 in conjunction with a blue singlet‐harvesting emitter. By using such a new system where the host singlet is resonant with the blue fluorophore singlet state and the host triplet is resonant with the orange phosphor triplet level, this white light‐emitting structure can achieve peak EL efficiencies of 26.6 cd A?1 and 13.5 lm W?1 that are generally superior to other two‐element all‐fluorophore or all‐phosphor OLED counterparts in terms of both color stability and emission efficiency.  相似文献   

11.
We report a high performance orange organic light-emitting diode (OLED) where red and green phosphorescent dyes are doped in an exciplex forming co-host as separate red and green emitting layers (EMLs). The OLED shows a maximum external quantum efficiency (EQE) of 22.8%, a low roll-off of efficiency with an EQE of 19.6% at 10,000 cd/m2, and good orange color with a CIE coordinate of (0.442, 0.529) and no color change from 1000 to 10,000 cd/m2. The exciplex forming co-host system distributes the recombination zone all over the EMLs and reduces the triplet exciton quenching processes.  相似文献   

12.
A series of compounds containing arylamine and 1,2‐diphenyl‐1H‐benz[d]imidazole moieties are developed as ambipolar, blue‐emitting materials with tunable blue‐emitting wavelengths, tunable ambipolar carrier‐transport properties and tunable triplet energy gaps. These compounds possess several novel properties: (1) they emit in the blue region with high quantum yields; (2) they have high morphological stability and thermal stability; (3) they are capable of ambipolar carrier transport; (4) they possess tunable triplet energy gaps, suitable as hosts for yellow‐orange to green phosphors. The electron and hole mobilities of these compounds lie in the range of 0.68–144 × 10?6 and 0.34–147 × 10?6 cm2 V?1 s?1, respectively. High‐performance, single‐layer, blue‐emitting, fluorescent organic light‐emitting diodes (OLEDs) are achieved with these ambipolar materials. High‐performance, single‐layer, phosphorescent OLEDs with yellow‐orange to green emission are also been demonstrated using these ambipolar materials, which have different triplet energy gaps as the host for yellow‐orange‐emitting to green‐emitting iridium complexes. When these ambipolar, blue‐emitting materials are lightly doped with a yellow‐orange‐emitting iridium complex, white organic light‐emitting diodes (WOLEDs) can be achieved, as well by the use of the incomplete energy transfer between the host and the dopant.  相似文献   

13.
We report bipolar host materials with robust indenocarbazole and biphenyl moiety as hole-electron-transporting unit for phosphorescent yellow organic light-emitting diodes (OLEDs). New host materials demonstrated an excellent morphological stability with high glass transition temperature of 207 °C. Simultaneously, it also revealed appropriate triplet energy of about 2.6 eV for ideal triplet energy transfer to yellow phosphorescent dopant. A phosphorescent yellow OLED with new host ICBP1 (and ICBP2) and conventional yellow dopant iridium(III)bis(4-(4-t-butylphenyl)thieno[3,2-c]pyridinato-N,C2′)acetylacetonate (Ir(tptpy)2acac) shows a low driving voltage of 3.4 (and 3.6 V) at 1000 cd/m2, and maximum external quantum efficiency as high as 26.4%. Such efficient performance of phosphorescent yellow OLEDs is attributed to a good charge balance and high electron transport properties of host materials.  相似文献   

14.
New large-bandgap host materials with carbazole and carboline moieties were designed and synthesized for high-performance blue phosphorescent organic light-emitting diodes (PhOLEDs). The two kinds of host materials, 9-(4-(9H-carbazol-9-yl)phenyl)-6-(9H-carbazol-9-yl)-9H-pyrido[2,3-b]indole (pP2CZCB) and 9-(3-(9H-carbazol-9-yl)phenyl)-6-(9H-carbazol-9-yl)-9H-pyrido[2,3-b]indole (mP2CZCB), displayed promisingly high triplet energies of ∼2.92–2.93 eV for enhancing the exothermic energy transfer to bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic) in PhOLED devices. It was found that the blue PhOLEDs bearing the new host materials and the FIrpic dopant exhibited markedly higher external quantum efficiencies (EQEs) than a device made with 1,3-bis(N-carbazolyl)benzene (mCP) as the host. In particular, the PhOLED device made with 3 wt% FIrpic as the dopant and mP2CZCB as the host material displayed a low driving voltage of 4.13 V and the high EQE of 25.3% at 1000 cd m−2.  相似文献   

15.
Highly efficient blue electrophosphorescent organic light‐emitting diodes incorporating a bipolar host, 2,7‐bis(diphenylphosphoryl)‐9‐[4‐(N,N‐diphenylamino)phenyl]‐9‐phenylfluorene (POAPF), doped with a conventional blue triplet emitter, iridium(III) bis[(4,6‐difluoro‐phenyl)pyridinato‐N,C]picolinate (FIrpic) are fabricated. The molecular architecture of POAPF features an electron‐donating (p‐type) triphenylamine group and an electron‐accepting (n‐type) 2,7‐bis(diphenyl‐phosphoryl)fluorene segment linked through the sp3‐hybridized C9 position of the fluorene unit. The lack of conjugation between these p‐ and n‐type groups endows POAPF with a triplet energy gap (ET) of 2.75 eV, which is sufficiently high to confine the triplet excitons on the blue‐emitting guest. In addition, the built‐in bipolar functionality facilitates both electron and hole injection. As a result, a POAPF‐based device doped with 7 wt% FIrpic exhibits a very low turn‐on voltage (2.5 V) and high electroluminescence efficiencies (20.6% and 36.7 lm W?1). Even at the practical brightnesses of 100 and 1000 cd m?2, the efficiencies remain high (20.2%/33.8 lm W?1 and 18.8%/24.3 lm W?1, respectively), making POAPF a promising material for use in low‐power‐consumption devices for next‐generation flat‐panel displays and light sources.  相似文献   

16.
High performance solution‐processed fluorescent and phosphorescent organic light emitting diodes (OLEDs) are achieved by water solution processing of lacunary polyoxometalates used as novel electron injection/transport materials with excellent electron mobilities and hole blocking capabilities. Green fluorescent OLEDs using poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐co‐(1,4‐benzo‐{2,1′,3}‐thiadiazole)] (F8BT) as the emissive layer and our polyoxometalates as electron transport/hole blocking layers give a luminous efficiency up to 6.7 lm W?1 and a current efficiency up to 14.0 cd A?1 which remained nearly stable for about 500 h of operation. In addition, blue phosphorescent OLEDs (PHOLEDs) using poly(9‐vinylcarbazole) (PVK):1,3‐bis[2‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazo‐5‐yl]benzene (OXD‐7) as a host and 10.0 wt% FIrpic as the blue dopant in the emissive layer and a polyoxometalate as electron transport material give 12.5 lm W?1 and 30.0 cd A?1 power and luminous efficiency, respectively, which are among the best performance values observed to date for all‐solution processed blue PHOLEDs. The lacunary polyoxometalates exhibit unique properties such as low electron affinity and high ionization energy (of about 3.0 and 7.5 eV, respectively) which render them as efficient electron injection/hole blocking layers and, most importantly, exceptionally high electron mobility of up to 10?2 cm2 V?1 s?1.  相似文献   

17.
Organic light‐emitting diodes (OLEDs) can promise flexible, light weight, energy conservation, and many other advantages for next‐generation display and lighting applications. However, achieving efficient blue electroluminescence still remains a challenge. Though both phosphorescent and thermally activated delayed fluorescence materials can realize high‐efficiency via effective triplet utilization, they need to be doped into appropriate host materials and often suffer from certain degree of efficiency roll‐off. Therefore, developing efficient blue‐emitting materials suitable for nondoped device with little efficiency roll‐off is of great significance in terms of practical applications. Herein, a phenanthroimidazole?anthracene blue‐emitting material is reported that can attain high efficiency at high luminescence in nondoped OLEDs. The maximum external quantum efficiency (EQE) of nondoped device is 9.44% which is acquired at the luminescence of 1000 cd m?2. The EQE is still as high as 8.09% even the luminescence reaches 10 000 cd m?2. The maximum luminescence is ≈57 000 cd m?2. The electroluminescence (EL) spectrum shows an emission peak of 470 nm and the Commission International de L'Eclairage (CIE) coordinates is (0.14, 0.19) at the voltage of 7 V. To the best of the knowledge, this is among the best results of nondoped blue EL devices.  相似文献   

18.
A new series of full hydrocarbons, namely 4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(N,N‐diphenylaniline) (DTPAFB), N,N′‐(4,4′‐(9,9′‐(1,3‐phenylene)bis(9H‐fluorene‐9,9‐diyl))bis(4,1‐phenylene))bis(N‐phenylnaphthalen‐1‐amine) (DNPAFB), 1,3‐bis(9‐(4‐(9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, and 1,3‐bis(9‐(4‐(3,6‐di‐tert‐butyl‐9H‐carbazol‐9‐yl)phenyl)‐9H‐fluoren‐9‐yl)benzene, featuring a highly twisted tetrahedral conformation, are designed and synthesized. Organic light‐emitting diodes (OLEDs) comprising DNPAFB and DTPAFB as hole transporting layers and tris(quinolin‐8‐yloxy)aluminum as an emitter are made either by vacuum deposition or by solution processing, and show much higher maximum efficiencies than the commonly used N,N′‐di(naphthalen‐1‐yl)‐N,N′‐diphenylbiphenyl‐4,4′‐diamine device (3.6 cd A?1) of 7.0 cd A?1 and 6.9 cd A?1, respectively. In addition, the solution processed blue phosphorescent OLEDs employing the synthesized materials as hosts and iridium (III) bis[(4,6‐di‐fluorophenyl)‐pyridinato‐N, C2] picolinate (FIrpic) phosphor as an emitter present exciting results. For example, the DTPAFB device exhibits a brightness of 47 902 cd m?2, a maximum luminescent efficiency of 24.3 cd A?1, and a power efficiency of 13.0 lm W?1. These results show that the devices are among the best solution processable blue phosphorescent OLEDs based on small molecules. Moreover, a new approach to constructing solution processable small molecules is proposed based on rigid and bulky fluorene and carbazole moieties combined in a highly twisted configuration, resulting in excellent solubility as well as chemical miscibility, without the need to introduce any solubilizing group such as an alkyl or alkoxy chain.  相似文献   

19.
The lack of high-performance blue light-emitting electrochemical cells (LECs) has remained a formidable challenge for fabricating white LECs for lighting applications. Here, a ionic exciplex host is used for color-stable, efficient, and bright blue LECs by taking advantage of its facilitated carrier injection, bipolar charge-transport, and efficient energy transfer to the guest dopant. A cationic donor molecule, 1-(3-(3,6-di-tert-butyl-9H-carbazol-9-yl)phenyl)-3-methyl-1H-imidazol-3-ium hexafluorophosphate (tbuCAZ-ImMePF6), and a cationic acceptor molecule, 1-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-3-ethyl-1H-imidazol-3-ium hexafluorophosphate (TRZ-ImEtPF6), are developed to form the ionic exciplex host. The mixed film of tbuCAZ-ImMePF6 and TRZ-ImEtPF6 affords blue exciplex with fast reverse intersystem crossing and thermally activated delayed fluorescence. For the film doped with a blue-emitting iridium complex, energy is efficiently transferred from the exciplex to the complex. Host-guest LECs using the doped film as the active layer show stable blue emission color and high current efficiencies of up to 25.8 cd A−1. More importantly, they attain simultaneously high efficiency and high brightness (14.1/17.4/16.8 cd A−1 at 705/872/1680 cd m−2), which are the most efficient and bright host-guest blue LECs reported so far. The primary host-guest LEC also exhibits promising operational stability. The work reveals that the use of an ionic exciplex host is a promising avenue toward high-performance blue LECs.  相似文献   

20.
《Organic Electronics》2004,5(5):265-270
We demonstrate high efficiency electrophosphorescence in organic light-emitting devices employing a phosphorescent dye doped into a low-molecule material. Methoxy-substituted 1,3,5-tris[4-(diphenylamino)phenyl]benzene (TDAPB) was selected as the host material for the phosphorescent dopant fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3], and organic films were fabricated by spin-coating. A peak external quantum efficiency of 8.2% (29 cd/A), luminous power efficiency of 17.3 lm/W, and luminance of 33,000 cd/m2 were achieved at 9.4 V with a 90 nm-thick emitting layer. Emission from the host TDAPB material was not observed in the electroluminescence (EL) and photoluminescence (PL) spectra. The decrease in efficiencies at a high current is analyzed using the triplet–triplet annihilation model. The high performance for the simple device structure in this study is attributed to excellent film forming properties of the material and efficient energy transfer from the host to dopants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号