首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Organic–inorganic hybrid perovskites (OHPs) are promising emitters for light‐emitting diodes (LEDs) due to the high color purity, low cost, and simple synthesis. However, the electroluminescent efficiency of polycrystalline OHP LEDs (PeLEDs) is often limited by poor surface morphology, small exciton binding energy, and long exciton diffusion length of large‐grain OHP films caused by uncontrolled crystallization. Here, crystallization of methylammonium lead bromide (MAPbBr3) is finely controlled by using a polar solvent‐soluble self‐doped conducting polymer, poly(styrenesulfonate)‐grafted polyaniline (PSS‐g‐PANI), as a hole injection layer (HIL) to induce granular structure, which makes charge carriers spatially confined more effectively than columnar structure induced by the conventional poly(3,4‐ethylenedioythiphene):polystyrenesulfonate (PEDOT:PSS). Moreover, lower acidity of PSS‐g‐PANI than PEDOT:PSS reduces indium tin oxide (ITO) etching, which releases metallic In species that cause exciton quenching. Finally, doubled device efficiency of 14.3 cd A‐1 is achieved for PSS‐g‐PANI‐based polycrystalline MAPbBr3 PeLEDs compared to that for PEDOT:PSS‐based PeLEDs (7.07 cd A‐1). Furthermore, PSS‐g‐PANI demonstrates high efficiency of 37.6 cd A‐1 in formamidinium lead bromide nanoparticle LEDs. The results provide an avenue to both control the crystallization kinetics and reduce the migration of In released from ITO by forming OIP films favorable for more radiative luminescence using the polar solvent‐soluble and low‐acidity polymeric HIL.  相似文献   

2.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films are obtained using ionic liquids as additives. Upon adding 1‐ethyl‐3‐methylimidazolium tetracyanoborate (EMIM TCB) to the conducting polymer, the conductivity increases to 2084 S cm?1; this is attributed to the phase separation of PSS leading to a structural change in the film. A comparative study with 1‐butyl‐3‐methyl imidazolium tetrafluoroborate (BMIM BF4) shows that EMIM TCB gives higher conductivity and transmittance and can be regarded as one of the most promising additives for the preparation of indium tin oxide (ITO)‐free organic devices using PEDOT:PSS/EMIM TCB as electrodes.  相似文献   

3.
Nanoislands have been fabricated on the surface of conducting poly(3,4‐ethylenedioxythiophene) (PEDOT) films doped with poly(4‐styrenesulfonate) (PSS) using high‐energy (≈ 1–3 MeV) Cl2+ ion irradiation. Scanning electron microscopy and atomic force microscopy confirm the direct formation of nanoislands with diameters ranging from 50 to 300 nm and heights ranging from 40 to 120 nm. From our analysis, we propose that the formation of nanoislands might be due to micelle formation of the polymeric stabilizer poly(sodium 4‐styrenesulfonate) (PSS‐Na) surrounding the nuclei in the PEDOT/PSS via the high‐energy‐ion irradiation. We observe similar results for high‐energy‐ion irradiated polyaniline doped with PSS‐Na. On using the nanoislands as nanotip emitters of a field‐emission display, an increase in the current density of about five orders of magnitude is observed. Cyclic voltammetry of the PEDOT/PSS electrode with the nanoislands as the electrode shows enhanced capacitance compared with that of the PEDOT/PSS film that contains no nanostructure.  相似文献   

4.
A cationic and water‐soluble polythiophene [poly[3‐(6‐pyridiniumylhexyl)thiophene bromide] (P3PHT+Br?)] is synthesized and used in combination with anionic poly(3,4‐ethylenedioxythiophene):poly(p‐styrenesulfonate) (PEDOT:PSS)? to produce hybrid coatings on indium tin oxide (ITO). Two coating strategies are established: i) electrostatic layer‐by‐layer assembly with colloidal suspensions of (PEDOT:PSS)?, and ii) modification of an electrochemically prepared (PEDOT:PSS)? film on ITO. The coatings are found to modify the work function of ITO such that it could act as a cathode in inverted 2,5‐diyl‐poly(3‐hexylthiophene) (P3HT)/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) polymer photovoltaic cells. The interfacial modifier created from the layer‐by‐layer assembly route is used to produce efficient inverted organic photovoltaic devices (power conversion efficiency ~2%) with significant long‐term stability in excess of 500 h.  相似文献   

5.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

6.
The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole‐conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin‐coating poly(9,9‐dioctyl‐fluorene‐coN‐ (4‐butylphenyl)‐diphenylamine) (TFB) on top of the poly(3,4‐ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole‐injection energy barriers, bulk charge‐transport properties, and current–voltage characteristics observed in a representative PFO‐based (PFO: poly(9,9‐dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole‐injection properties of organic electronic devices.  相似文献   

7.
A facile and novel one‐step method of growing nickel‐cobalt layered double hydroxide (Ni‐Co LDH) hybrid films with ultrathin nanosheets and porous nanostructures on nickel foam is presented using cetyltrimethylammonium bromide as nanostructure growth assisting agent but without any adscititious alkali sources and oxidants. As pseudocapacitors, the as‐obtained Ni‐Co LDH hybrid film‐based electrodes display a significantly enhanced specific capacitance (2682 F g?1 at 3 A g?1, based on active materials) and energy density (77.3 Wh kg?1 at 623 W kg?1), compared to most previously reported electrodes based on nickel‐cobalt oxides/hydroxides. Moreover, the asymmetric supercapacitor, with the Ni‐Co LDH hybrid film as the positive electrode material and porous freeze‐dried reduced graphene oxide (RGO) as the negative electrode material, exhibits an ultrahigh energy density (188 Wh kg?1) at an average power density of 1499 W kg?1 based on the mass of active material, which greatly exceeds the energy densities of most previously reported nickel or cobalt oxide/hydroxide‐based asymmetric supercapacitors.  相似文献   

8.
To achieve the broad utilization of the full functionality of graphene (GR) in devices, a transfer method should be developed that can simplify the process without leaving residue of the insulating supporting layer on the surface of GR. Furthermore, stable GR doping without the use of an insulating polymer is required. Here, a new GR transfer method that uses a popular conducting polymer, poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), is reported as a new supporting layer for the transfer of GR films that are synthesized by chemical vapor deposition. The GR/PEDOT:PSS bilayer can be directly utilized without the removal process. Therefore, this transfer method simplifies the transfer process and solves the residue problem of conventional transfer methods. The stable doping of GR films is simultaneously achieved by using the PEDOT:PSS layer. The new GR/PEDOT:PSS hybrid electrodes are fully functional in polymer solar cells and polymer light‐emitting diodes, outperforming the conventionally transferred GR electrodes and indium tin oxide electrodes.  相似文献   

9.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

10.
An efficient white‐light‐emitting polymer ( W3 ) is realized by covalently attaching a green fluorophore and a red phosphor into the backbone and the side chains, respectively, of polyfluorene at a concentration of 0.04 mol %. In addition, charge‐transporting pendant units are included to improve carrier injection and transport. White‐electrophosphorescent devices with the structure ITO/PEDOT:PSS/ W3 /CsF/Al (ITO: indium tin oxide; PEDOT:PSS: poly(styrenesulfonate)‐doped poly(3,4‐ethylenedioxythiophene)) exhibit a low turn‐on voltage of 2.8 V and a luminance of ca. 103 cd m–2 at below 6 V. The peak luminance and power‐conversion efficiencies are 8.2 cd A–1 and 7.2 lm W–1, respectively. Furthermore, the device shows relatively stable white emission: the Commission Internationale d'Éclairage (CIE) chromaticity coordinates of the devices change only slightly from (0.35,0.38) at 10 mA cm–2 to (0.33,0.36) at 100 mA cm–2, with an almost constant color render index (CRI) value of 82 at all measured current densities.  相似文献   

11.
All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride–trifluoroethylene (P(VDF‐TrFE)) and n‐type semiconducting [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The nanoscale phase separated films consist of PCBM domains that extend from bottom to top electrode, surrounded by a ferroelectric P(VDF‐TrFE) matrix. Highly conducting poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer electrodes are used to engineer band offsets at the interfaces. The devices display resistive switching behavior due to modulation of this injection barrier. With careful optimization of the solvent and processing conditions, it is possible to spin cast very smooth blend films (Rrms ≈ 7.94 nm) and with good reproducibility. The devices exhibit high Ion/Ioff ratios (≈3 × 103), low read voltages (≈5 V), excellent dielectric response at high frequencies (?r ≈ 8.3 at 1 MHz), and excellent retention characteristics up to 10 000 s.  相似文献   

12.
Flexible and transparent textile‐based conductors are developed by inkjet printing poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto polyethylene terephthalate (PET) mesh fabrics. The conductivity–transparency relationship is determined for textile‐based conductors with different thicknesses of the printed PEDOT:PSS film. The function of these textile‐based conductors is studied in the alternating current powder electroluminescent (ACPEL) devices and compared with indium tin oxide (ITO) glass in an ACPEL device of the same configuration. Textiles coated with conducting polymers are a potential alternative to coated polymer films for flexible, transparent conductors.  相似文献   

13.
Fiber supercapacitors have aroused great interest in the field of portable and wearable electronic devices. However, the restrained surface area of fibers and limited reaction kinetics of active materials are unfavorable for performance enhancement. Herein, an efficient multicomponent hierarchical structure is constructed by integrating the Cu‐doped cobalt copper carbonate hydroxide@nickel cobalt layered double hydroxide (CCCH@NiCo‐LDH) core–shell nanowire arrays (NWAs) on Cu fibers with highly conductive Au‐modified CuO nanosheets (CCCH@NiCo‐LDH NWAs@Au–CuO/Cu) via a novel in situ corrosion growth method. This multicomponent hierarchical structure contributes to a large accessible surface area, which results in sufficient permeation of the electrolyte. The Cu dopant could reduce the work function and facilitate fast charge transfer kinetics. Therefore, the effective ion diffusion and electron conduction will facilitate the electrochemical reaction kinetics of the electrode. Benefiting from this unique structure, the electrode delivers a high specific capacitance (1.97 F cm?2/1237 F g?1/193.3 mAh g?1) and cycling stability (90.8% after 30 000 cycles), exhibiting superb performance compared with most oxide‐based fiber electrodes. Furthermore, the hybrid fiber supercapacitor of CCCH@NiCo‐LDH NWAs@Au–CuO/Cu//VN/carbon fibers is fabricated, providing a remarkable maximal energy density of 34.97 Wh kg?1 and a power density of 13.86 kW kg?1, exhibiting a great potential in high‐performance fiber‐shape energy‐related systems.  相似文献   

14.
Here, a facial and scalable method for efficient exfoliation of bulk transition metal dichalcogenides (TMD) and graphite in aqueous solution with poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to prepare single‐ and few‐layer nanosheets is demonstrated. Importantly, these TMD nanosheets retain the single crystalline characteristic, which is essential for application in organic solar cells (OSCs). The hybrid PEDOT:PSS/WS2 ink prepared by a simple centrifugation is directly integrated as a hole extraction layer for high‐performance OSCs. Compared with PEDOT:PSS, the PEDOT:PSS/WS2‐based devices provide a remarkable power conversion efficiency due to the “island” morphology and benzoid–quinoid transition. This study not only demonstrates a novel method for preparing single‐ and few‐layer TMD and graphene nanosheets but also paves a way for their applications without further complicated processing.  相似文献   

15.
Heterojunctions formed by ultrathin conductive polymer [poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate)—PEDOT:PSS] films and n‐type crystalline silicon are investigated by photoelectron spectroscopy. Large shifts of Si 2p core levels upon PEDOT:PSS deposition provide evidence that a dopant‐free p–n junction, i.e., an inversion layer, is formed within Si. Among the investigated PEDOT:PSS formulations, the largest induced band bending within Si (0.71 eV) is found for PH1000 (high PEDOT content) combined with a wetting agent and the solvent additive dimethyl sulfoxide (DMSO). Without DMSO, the induced band bending is reduced, as is also the case with a PEDOT:PSS formulation with higher PSS content. The interfacial energy level alignment correlates well with the characteristics of PEDOT:PSS/n‐Si solar cells, where high polymer conductivity and sufficient Si‐passivation are also required to achieve high power conversion efficiency.  相似文献   

16.
MXenes, a young family of 2D transition metal carbides/nitrides, show great potential in electrochemical energy storage applications. Herein, a high performance ultrathin flexible solid‐state supercapacitor is demonstrated based on a Mo1.33C MXene with vacancy ordering in an aligned layer structure MXene/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) composite film posttreated with concentrated H2SO4. The flexible solid‐state supercapacitor delivers a maximum capacitance of 568 F cm?3, an ultrahigh energy density of 33.2 mWh cm?3 and a power density of 19 470 mW cm?3. The Mo1.33C MXene/PEDOT:PSS composite film shows a reduction in resistance upon H2SO4 treatment, a higher capacitance (1310 F cm?3) and improved rate capabilities than both pristine Mo1.33C MXene and the nontreated Mo1.33C/PEDOT:PSS composite films. The enhanced capacitance and stability are attributed to the synergistic effect of increased interlayer spacing between Mo1.33C MXene layers due to insertion of conductive PEDOT, and surface redox processes of the PEDOT and the MXene.  相似文献   

17.
Interface engineering is critical to the development of highly efficient perovskite solar cells. Here, urea treatment of hole transport layer (e.g., poly(3,4‐ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS)) is reported to effectively tune its morphology, conductivity, and work function for improving the efficiency and stability of inverted MAPbI3 perovskite solar cells (PSCs). This treatment has significantly increased MAPbI3 photovoltaic performance to 18.8% for the urea treated PEDOT:PSS PSCs from 14.4% for pristine PEDOT:PSS devices. The use of urea controls phase separation between PEDOT and PSS segments, leading to the formation of a unique fiber‐shaped PEDOT:PSS film morphology with well‐organized charge transport pathways for improved conductivity from 0.2 S cm?1 for pristine PEDOT:PSS to 12.75 S cm?1 for 5 wt% urea treated PEDOT:PSS. The urea‐treatment also addresses a general challenge associated with the acidic nature of PEDOT:PSS, leading to a much improved ambient stability of PSCs. In addition, the device hysteresis is significantly minimized by optimizing the urea content in the treatment.  相似文献   

18.
A novel hierarchical nanotube array (NTA) with a massive layered top and discretely separated nanotubes in a core–shell structure, that is, nickel–cobalt metallic core and nickel–cobalt layered double hydroxide shell (Ni?Co@Ni?Co LDH), is grown on carbon fiber cloth (CFC) by template‐assisted electrodeposition for high‐performance supercapacitor application. The synthesized Ni?Co@Ni?Co LDH NTAs/CFC shows high capacitance of 2200 F g?1 at a current density of 5 A g?1, while 98.8% of its initial capacitance is retained after 5000 cycles. When the current density is increased from 1 to 20 A g?1, the capacitance loss is less than 20%, demonstrating excellent rate capability. A highly flexible all‐solid‐state battery‐type supercapacitor is successfully fabricated with Ni?Co LDH NTAs/CFC as the positive electrode and electrospun carbon fibers/CFC as the negative electrode, showing a maximum specific capacitance of 319 F g?1, a high energy density of 100 W h kg?1 at 1.5 kW kg?1, and good cycling stability (98.6% after 3000 cycles). These fascinating electrochemical properties are resulted from the novel structure of electrode materials and synergistic contributions from the two electrodes, showing great potential for energy storage applications.  相似文献   

19.
The use of conducting polymers such as poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) for the development of soft organic bioelectronic devices, such as organic electrochemical transistors (OECTs), is rapidly increasing. However, directly manipulating conducting polymer thin films on soft substrates remains challenging, which hinders the development of conformable organic bioelectronic devices. A facile transfer‐printing of conducting polymer thin films from conventional rigid substrates to flexible substrates offers an alternative solution. In this work, it is reported that PEDOT:PSS thin films on glass substrates, once mixed with surfactants, can be delaminated with hydrogels and thereafter be transferred to soft substrates without any further treatments. The proposed method allows easy, fast, and reliable transferring of patterned PEDOT:PSS thin films from glass substrates onto various soft substrates, facilitating their application in soft organic bioelectronics. By taking advantage of this method, skin‐attachable tattoo‐OECTs are demonstrated, relevant for conformable, imperceptible, and wearable organic biosensing.  相似文献   

20.
Hybrid solar cells made of a p‐type conducting polymer, poly(3,4‐ethyl thiophene):polystyrenesulfonate (PEDOT:PSS), on Si have gained considerable interest in the fabrication of cost‐effective high‐efficiency devices. However, most of the high power conversion efficiency (PCE) performances have been obtained from solar cells fabricated on surface‐structured Si substrates. High‐performance planar single‐junction solar cells have considerable advantages in terms of processing and cost, because they do not require the complex surface texturing processes. The interface of single‐junction solar cells can critically influence the performance. Here, we demonstrate the effect of adding different surfactants in a co‐solvent‐optimized PEDOT:PSS polymer, which, in addition to acting as a p‐layer and as an anti‐reflective coating, also enhances the device performance of a hybrid planar‐Si solar cell. Using time‐of‐flight secondary ion mass spectrometry, we conduct three‐dimensional chemical imaging of the interface, which enables us to characterize the micropore defects found to limit the PCE. Upon minimizing these micropore defects with the addition of optimized amounts of fluorosurfactant and co‐solvent, we achieve a PEDOT:PSS/planar‐Si cell with a record high PCE of 13.3% for the first time. Our present approach of micropore defect reduction can also be used to improve the performance of other organic electronic devices based on PEDOT:PSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号