首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
The formation of a solid electrolyte interface (SEI) on the surface of a carbon anode consumes the active sodium ions from the cathode and reduces the energy density of sodium‐ion batteries (SIBs). Herein, a simple electrode‐level presodiation strategy by spraying a sodium naphthaline (Naph‐Na) solution onto a carbon electrode is reported, which compensates the initial sodium loss and improves the energy density of SIBs. After presodiation, an SEI layer is preformed on the surface of carbon anode before battery cycling. It is shown that a large irreversible capacity of 60 mAh g?1 is replenished and 20% increase of the first‐cycle Coulombic efficiency is achieved for a hard carbon anode using this presodiation strategy, and the energy density of a Na0.9[Cu0.22Fe0.30Mn0.48]O2||carbon full cell is increased from 141 to 240 Wh kg?1 by using the presodiated carbon anode. This simple and scalable electrode‐level chemical presodiation route also shows generality and value for the presodiation of other anodes in SIBs.  相似文献   

2.
With the increasing demand for low cost, long lifetime, high energy density storage systems, an extensive amount of effort has recently been focused on the development of sodium‐ion batteries (SIBs), and a variety of cathode materials have been discovered. However, looking for the most suitable anode material for practical application is a major challenge for SIBs. Herein, a high capacity sulfur‐doped black phosphorus‐TiO2 (TiO2‐BP‐S) anode material for SIBs is first synthesized by a feasible and large‐scale high‐energy ball‐milling approach, and its stability in air exposure is investigated through X‐ray photoelectron spectroscopy. The morphology of TiO2‐BP‐S is characterized using transmission electron microscopy, indicating that the TiO2 nanoparticles produce P? Ti bonds with BP. The TiO2‐BP‐S composite with P? S and P? Ti bonds exhibits excellent stability in air and the superior electrochemical performance. For example, the discharge specific capacity is up to 490 mA h g?1 after 100 cycles at 50 mA g?1, and it remains at 290 mA h g?1 after 600 cycles at 500 mA g?1. Meanwhile, the scientific insight that the formation of stable P? S and P? Ti bonds can provide a guide for the practical large‐scale application of SIBs in other titanium base and black phosphorus materials is looked forward.  相似文献   

3.
Prussian blue and its analogues (PBAs) have been proposed as promising cathode materials for sodium‐ion batteries (SIBs) due to high theoretical capacity and low cost, but they often suffer from poor electronic conductivity and structural instability. Herein, a stepwise hollow cubic framework structure is first designed and a hybridized hierarchical film synthesized from single‐crystal PBA nanoframes/carbon nanotubes (CNTs) composite is demonstrated as a binder‐free ultrahigh rate sodium ion cathode. This hierarchical configuration offers improved tolerance for lattice expansion, reduced sodium ion diffusion path, enhanced electronic conductivity, and optimized redox reactions, thereby achieving the excellent rate capability, high specific capacity, and long cycle life. As expected, the developed FeHCFe nanoframes/CNTs electrode film exhibits a super high rate capacity of 149.2 mAh g?1 at 0.1C and 35.0 mAh g?1 at 100C. Moreover, it displays an excellent cycling stability with about 92% capacity retention at 5C after 500 cycles. This work will pave a new way to engineer advanced electrode materials for ultrahigh rate SIBs.  相似文献   

4.
On account of increasing demand for energy storage devices, sodium‐ion batteries (SIBs) with abundant reserve, low cost, and similar electrochemical properties have the potential to partly replace the commercial lithium‐ion batteries. In this study, a facile metal‐organic framework (MOF)‐derived selenidation strategy to synthesize in situ carbon‐encapsulated selenides as superior anode for SIBs is rationally designed. These selenides with particular micro‐ and nanostructured features deliver ultrastable cycling performance at high charge–discharge rate and demonstrate ultraexcellent rate capability. For example, the uniform peapod‐like Fe7Se8@C nanorods represent a high specific capacity of 218 mAh g?1 after 500 cycles at 3 A g?1 and the porous NiSe@C spheres display a high specific capacity of 160 mAh g?1 after 2000 cycles at 3 A g?1. The current simple MOF‐derived method could be a promising strategy for boosting the development of new functional inorganic materials for energy storage, catalysis, and sensors.  相似文献   

5.
Herein, Ti4+ in P′2‐Na0.67[(Mn0.78Fe0.22)0.9Ti0.1]O2 is proposed as a new strategy for optimization of Mn‐based cathode materials for sodium‐ion batteries, which enables a single phase reaction during de‐/sodiation. The approach is to utilize the stronger Ti–O bond in the transition metal layers that can suppress the movements of Mn–O and Fe–O by sharing the oxygen with Ti by the sequence of Mn–O–Ti–O–Fe. It delivers a discharge capacity of ≈180 mAh g?1 over 200 cycles (86% retention), with S‐shaped smooth charge–discharge curves associated with a small volume change during cycling. The single phase reaction with a small volume change is further confirmed by operando synchrotron X‐ray diffraction. The low activation barrier energy of ≈541 meV for Na+ diffusion is predicted using first‐principles calculations. As a result, Na0.67[(Mn0.78Fe0.22)0.9Ti0.1]O2 can deliver a high reversible capacity of ≈153 mAh g?1 even at 5C (1.3 A g?1), which corresponds to ≈85% of the capacity at 0.1C (26 mA g?1). The nature of the sodium storage mechanism governing the ultrahigh electrode performance in a full cell with a hard carbon anode is elucidated, revealing the excellent cyclability and good retention (≈80%) for 500 cycles (111 mAh g?1) at 5C (1.3 A g?1).  相似文献   

6.
Germanium is considered as a promising anode material because of its comparable lithium and sodium storage capability, but it usually exhibits poor cycling stability due to the large volume variation during lithium or sodium uptake and release processes. In this paper, germanium@graphene nanofibers are first obtained through electrospinning followed by calcination. Then atomic layer deposition is used to fabricate germanium@graphene@TiO2 core–shell nanofibers (Ge@G@TiO2 NFs) as anode materials for lithium and sodium ion batteries (LIBs and SIBs). Graphene and TiO2 can double protect the germanium nanofibers in charge and discharge processes. The Ge@G@TiO2 NFs composite as an anode material is versatile and exhibits enhanced electrochemical performance for LIBs and SIBs. The capacity of the Ge@G@TiO2 NFs composite can be maintained at 1050 mA h g?1 (100th cycle) and 182 mA h g?1 (250th cycle) for LIBs and SIBs, respectively, at a current density of 100 mA g?1, showing high capacity and good cycling stability (much better than that of Ge nanofibers or Ge@G nanofibers).  相似文献   

7.
Sodium ion batteries (SIBs) are a promising alternative to lithium ion batteries for a broader range of energy storage applications in the future. However, the development of high‐performance anode materials is a bottleneck of SIBs advancement. In this work, Sb2Se3 nanorods uniformly wrapped by reduced graphene oxide (rGO) as a promising anode material for SIBs are reported. The results show that such Sb2Se3/rGO hybrid anode yields a high reversible mass‐specific energy capacity of 682, 448, and 386 mAh g?1 at a rate of 0.1, 1.0, and 2.0 A g?1, respectively, and sustains at least 500 stable cycles at a rate of 1.0 A g?1 with an average mass‐specific energy capacity of 417 mAh g?1 and capacity retention of 90.2%. In situ X‐ray diffraction study on a live SIB cell reveals that the observed high performance is a result of the combined Na+ intercalation, conversion reaction between Na+ and Se, and alloying reaction between Na+ and Sb. The presence of rGO also plays a key role in achieving high rate capacity and cycle stability by providing good electrical conductivity, tolerant accommodation to volume change, and strong electron interactions to the base Sb2Se3 anode.  相似文献   

8.
Na‐ion Batteries have been considered as promising alternatives to Li‐ion batteries due to the natural abundance of sodium resources. Searching for high‐performance anode materials currently becomes a hot topic and also a great challenge for developing Na‐ion batteries. In this work, a novel hybrid anode is synthesized consisting of ultrafine, few‐layered SnS2 anchored on few‐layered reduced graphene oxide (rGO) by a facile solvothermal route. The SnS2/rGO hybrid exhibits a high capacity, ultralong cycle life, and superior rate capability. The hybrid can deliver a high charge capacity of 649 mAh g?1 at 100 mA g?1. At 800 mA g?1 (1.8 C), it can yield an initial charge capacity of 469 mAh g?1, which can be maintained at 89% and 61%, respectively, after 400 and 1000 cycles. The hybrid can also sustain a current density up to 12.8 A g?1 (≈28 C) where the charge process can be completed in only 1.3 min while still delivering a charge capacity of 337 mAh g?1. The fast and stable Na‐storage ability of SnS2/rGO makes it a promising anode for Na‐ion batteries.  相似文献   

9.
A cathode material of an electrically conducting carbon‐LiMnPO4 nanocomposite is synthesized by ultrasonic spray pyrolysis followed by ball milling. The effect of the carbon content on the physicochemical and electrochemical properties of this material is extensively studied. A LiMnPO4 electrode with 30 wt% acetylene black (AB) carbon exhibits an excellent rate capability and good cycle life in cell tests at 55 and 25 °C. This electrode delivers a discharge capacity of 158 mAh g?1 at 1/20 C, 126 mAh g?1 at 1 C, and 107 mAh g?1 at 2 C rate, which are the highest capacities reported so far for this type of electrode. Transmission electron microscopy and Mn dissolution results confirm that the carbon particles surrounding the LiMnPO4 protect the electrode from HF attack, and thus lead to a reduction of the Mn dissolution that usually occurs with this electrode. The improved electrochemical properties of the C‐LiMnPO4 electrode are also verified by electrochemical impedance spectroscopy.  相似文献   

10.
Sodium‐ion batteries (SIBs) are considered as promising alternatives to lithium‐ion batteries (LIBs) for energy storage due to the abundance of sodium, especially for grid distribution systems. The practical implementation of SIBs, however, is severely hindered by their low energy density and poor cycling stability due to the poor electrochemical performance of the existing electrodes. Here, to achieve high‐capacity and durable sodium storage with good rate capability, hierarchical hollow NiS spheres with porous shells composed of nanoparticles are designed and synthesized by tuning the reaction parameters. The formation mechanism of this unique structure is systematically investigated, which is clearly revealed to be Ostwald ripening mechanism on the basis of the time‐dependent morphology evolution. The hierarchical hollow structure provides sufficient electrode/electrolyte contact, shortened Na+ diffusion pathways, and high strain‐tolerance capability. The hollow NiS spheres deliver high reversible capacity (683.8 mAh g?1 at 0.1 A g?1), excellent rate capability (337.4 mAh g?1 at 5 A g?1), and good cycling stability (499.9 mAh g?1 with 73% retention after 50 cycles at 0.1 A g?1).  相似文献   

11.
Potassium‐ion batteries (KIBs) in organic electrolytes hold great promise as an electrochemical energy storage technology owing to the abundance of potassium, close redox potential to lithium, and similar electrochemistry with lithium system. Although carbon materials have been studied as KIB anodes, investigations on KIB cathodes have been scarcely reported. A comprehensive study on potassium Prussian blue K0.220Fe[Fe(CN)6]0.805?4.01H2O nanoparticles as a potential cathode material is for the first time reported. The cathode exhibits a high discharge voltage of 3.1–3.4 V, a high reversible capacity of 73.2 mAh g?1, and great cyclability at both low and high rates with a very small capacity decay rate of ≈0.09% per cycle. Electrochemical reaction mechanism analysis identifies the carbon‐coordinated FeIII/FeII couple as redox‐active site and proves structural stability of the cathode during charge/discharge. Furthermore, for the first time, a KIB full‐cell is presented by coupling the nanoparticles with commercial carbon materials. The full‐cell delivers a capacity of 68.5 mAh g?1 at 100 mA g?1 and retains 93.4% of the capacity after 50 cycles. Considering the low cost and material sustainability as well as the great electrochemical performances, this work may pave the way toward more studies on KIB cathodes and trigger future attention on rechargeable KIBs.  相似文献   

12.
This work studies for the first time the metallic 1T MoS2 sandwich grown on graphene tube as a freestanding intercalation anode for promising sodium‐ion batteries (SIBs). Sodium is earth‐abundant and readily accessible. Compared to lithium, the main challenge of sodium‐ion batteries is its sluggish ion diffusion kinetic. The freestanding, porous, hollow structure of the electrode allows maximum electrolyte accessibility to benefit the transportation of Na+ ions. Meanwhile, the metallic MoS2 provides excellent electron conductivity. The obtained 1T MoS2 electrode exhibits excellent electrochemical performance: a high reversible capacity of 313 mAh g?1 at a current density of 0.05 A g?1 after 200 cycles and a high rate capability of 175 mAh g?1 at 2 A g?1. The underlying mechanism of high rate performance of 1T MoS2 for SIBs is the high electrical conductivity and excellent ion accessibility. This study sheds light on using the 1T MoS2 as a novel anode for SIBs.  相似文献   

13.
This work reports that natural graphite is capable of Na insertion and extraction with a remarkable reversibility using ether‐based electrolytes. Natural graphite (the most well‐known anode material for Li–ion batteries) has been barely studied as a suitable anode for Na rechargeable batteries due to the lack of Na intercalation capability. Herein, graphite is not only capable of Na intercalation but also exhibits outstanding performance as an anode for Na ion batteries. The graphite anode delivers a reversible capacity of ≈150 mAh g?1 with a cycle stability for 2500 cycles, and more than 75 mAh g?1 at 10 A g?1 despite its micrometer‐size (≈100 μm). An Na storage mechanism in graphite, where Na+‐solvent co‐intercalation occurs combined with partial pseudocapacitive behaviors, is revealed in detail. It is demonstrated that the electrolyte solvent species significantly affect the electrochemical properties, not only rate capability but also redox potential. The feasibility of graphite in a Na full cell is also confirmed in conjunction with the Na1.5VPO4.8F0.7 cathode, delivering an energy of ≈120 Wh kg?1 while maintaining ≈70% of the initial capacity after 250 cycles. This exceptional behavior of natural graphite promises new avenues for the development of cost‐effective and reliable Na ion batteries.  相似文献   

14.
Heterostructuring electrodes with multiple electroactive and inactive supporting components to simultaneously satisfy electrochemical and structural requirements has recently been identified as a viable pathway to achieve high‐capacity and durable sodium‐ion batteries (SIBs). Here, a new design of heterostructured SIB anode is reported consisting of double metal‐sulfide (SnCo)S2 nanocubes interlaced with 2D sulfur‐doped graphene (SG) nanosheets. The heterostructured (SnCo)S2/SG nanocubes exhibit an excellent rate capability (469 mAh g?1 at 10.0 A g?1) and durability (5000 cycles, 487 mAh g?1 at 5.0 A g?1, 92.6% capacity retention). In situ X‐ray diffraction reveals that the (SnCo)S2/SG anode undergoes a six‐stage Na+ storage mechanism of combined intercalation, conversion, and alloying reactions. The first‐principle density functional theory calculations suggest high concentration of p–n heterojunctions at SnS2/CoS2 interfaces responsible for the high rate performance, while in situ transmission electron microscopy unveils that the interlacing and elastic SG nanosheets play a key role in extending the cycle life.  相似文献   

15.
Bismuth (Bi) is an attractive material as anodes for both sodium‐ion batteries (NIBs) and potassium‐ion batteries (KIBs), because it has a high theoretical gravimetric capacity (386 mAh g?1) and high volumetric capacity (3800 mAh L?1). The main challenges associated with Bi anodes are structural degradation and instability of the solid electrolyte interphase (SEI) resulting from the huge volume change during charge/discharge. Here, a multicore–shell structured Bi@N‐doped carbon (Bi@N‐C) anode is designed that addresses these issues. The nanosized Bi spheres are encapsulated by a conductive porous N‐doped carbon shell that not only prevents the volume expansion during charge/discharge but also constructs a stable SEI during cycling. The Bi@N‐C exhibits unprecedented rate capability and long cycle life for both NIBs (235 mAh g?1 after 2000 cycles at 10 A g?1) and KIBs (152 mAh g?1 at 100 A g?1). The kinetic analysis reveals the outstanding electrochemical performance can be attributed to significant pseudocapacitance behavior upon cycling.  相似文献   

16.
Lithium‐ion batteries have undergone a remarkable development in the past 30 years. However, conventional electrodes are insufficient for the ever‐increasing demand of high‐energy batteries. Here, reported is a thick electrode with a dense structure, as an alternative to the commonly recognized porous framework. A low‐temperature sintering technology with the aid of aqueous solvent, high pressure, and an ion‐conductive additive is originally developed for preparing the LiCoO2 (LCO)/Li4Ti5O12 (LTO) dense‐structure electrode as the representative cathode/anode material. The 400 µm thick cathode with 110 mg cm?2 mass loading achieves a high specific capacity of 131.2 mAh g?1 with a good capacity retention of 96% over 150 cycles, far exceeding the commercial counterpart (≈40 µm) of 54.1 mAh g?1 with 39%. The ultrathick electrode of 1300 µm thickness presents a remarkable area capacity of 28.6 mAh cm?2 that is 16 times that of the commercial electrode. The full cell based on the dense electrodes delivers an extremely high areal capacity of 14.4 mAh cm?2. The ion‐diffusion coefficients of the densely sintered electrodes increase by nearly three orders of magnitude. This design opens up a new avenue for scalable and sustainable material manufacturing towards various practical applications.  相似文献   

17.
A facile synthesis of selenium sulfide (SeSx)/carbonized polyacrylonitrile (CPAN) composites is achieved by annealing the mixture of SeS2 and polyacrylonitrile (PAN) at 600 °C under vacuum. The SeSx molecules are confined by N‐containing carbon (ring) structures in the carbonized PAN to mitigate the dissolution of polysulfide and polyselenide intermediates in carbonate‐based electrolyte. In addition, formation of solid electrolyte interphase (SEI) on the surface of SeSx/CPAN electrode in the first cycle further prevents polysulfide and polyselenide intermediates from dissolution. The synergic restriction of SeSx by both CPAN matrix and SEI layer allows SeSx/CPAN composites to be charged and discharged in a low‐cost carbonate‐based electrolyte (LiPF6 in EC/DEC) with long cycling stability and high rate capability. At a current density of 600 mA g?1, it maintains a reversible capacity of 780 mAh g?1 for 1200 cycles. Moreover, it retains 50% of the capacity at 60 mA g?1 even when the current density increases to 6 A g?1. The superior electrochemical performance of SeSx/CPAN composite demonstrates that it is a promising cathode material for long cycle life and high power density lithium ion batteries. This is the first report on long cycling stability and high rate capability of selenium sulfide‐based cathode material.  相似文献   

18.
Aqueous zinc‐ion batteries are receiving increasing attention; however, the development of high‐voltage cathodes is limited by the narrow voltage window of conventional aqueous electrolytes. Herein, it is reported that Na3V2(PO4)2O1.6F1.4 exhibits the excellent performance, optimal to date, among polyanion cathode materials in a novel neutral water‐in‐bisalts electrolyte of 25 m ZnCl2 + 5 m NH4Cl. It delivers a reversible capacity of 155 mAh g?1 at 50 mA g?1, a high average operating potential of ≈1.46 V, and stable cyclability of 7000 cycles at 2 A g?1.  相似文献   

19.
Layered transition metal oxides (TMOs) are appealing cathode candidates for sodium‐ion batteries (SIBs) by virtue of their facile 2D Na+ diffusion paths and high theoretical capacities but suffer from poor cycling stability. Herein, taking P2‐type Na2/3Ni1/3Mn2/3O2 as an example, it is demonstrated that the hierarchical engineering of porous nanofibers assembled by nanoparticles can effectively boost the reaction kinetics and stabilize the structure. The P2‐Na2/3Ni1/3Mn2/3O2 nanofibers exhibit exceptional rate capability (166.7 mA h g?1 at 0.1 C with 73.4 mA h g?1 at 20 C) and significantly improved cycle life (≈81% capacity retention after 500 cycles) as cathode materials for SIBs. The highly reversible structure evolution and Ni/Mn valence change during sodium insertion/extraction are verified by in operando X‐ray diffraction and ex situ X‐ray photoelectron spectroscopy, respectively. The facilitated electrode process kinetics are demonstrated by an additional study using the electrochemical measurements and density functional theory computations. More impressively, the prototype Na‐ion full battery built with a Na2/3Ni1/3Mn2/3O2 nanofibers cathode and hard carbon anode delivers a promising energy density of 212.5 Wh kg?1. The concept of designing a fibrous framework composed of small nanograins offers a new and generally applicable strategy for enhancing the Na‐storage performance of layered TMO cathode materials.  相似文献   

20.
The lithium–sulfur (Li–S) battery is regarded as the most promising rechargeable energy storage technology for the increasing applications of clean energy transportation systems due to its remarkable high theoretical energy density of 2.6 kWh kg?1, considerably outperforming today's lithium‐ion batteries. Additionally, the use of sulfur as active cathode material has the advantages of being inexpensive, environmentally benign, and naturally abundant. However, the insulating nature of sulfur, the fast capacity fading, and the short lifespan of Li–S batteries have been hampered their commercialization. In this paper, a functional mesoporous carbon‐coated separator is presented for improving the overall performance of Li–S batteries. A straightforward coating modification of the commercial polypropylene separator allows the integration of a conductive mesoporous carbon layer which offers a physical place to localize dissolved polysulfide intermediates and retain them as active material within the cathode side. Despite the use of a simple sulfur–carbon black mixture as cathode, the Li–S cell with a mesoporous carbon‐coated separator offers outstanding performance with an initial capacity of 1378 mAh g?1 at 0.2 C, and high reversible capacity of 723 mAh g?1, and degradation rate of only 0.081% per cycle, after 500 cycles at 0.5 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号