首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shear‐thinning, self‐healing hydrogels are promising vehicles for therapeutic cargo delivery due to their ability to be injected using minimally invasive surgical procedures. An injectable hydrogel using a novel combination of dynamic covalent crosslinking with thermoresponsive engineered proteins is presented. Ex situ at room temperature, rapid gelation occurs through dynamic covalent hydrazone bonds by simply mixing two components: hydrazine‐modified elastin‐like protein (ELP) and aldehyde‐modified hyaluronic acid. This hydrogel provides significant mechanical protection to encapsulated human mesenchymal stem cells during syringe needle injection and rapidly recovers after injection to retain the cells homogeneously within a 3D environment. In situ, the ELP undergoes a thermal phase transition, as confirmed by coherent anti‐Stokes Raman scattering microscopy observation of dense ELP thermal aggregates. The formation of the secondary network reinforces the hydrogel and results in a tenfold slower erosion rate compared to a control hydrogel without secondary thermal crosslinking. This improved structural integrity enables cell culture for three weeks postinjection, and encapsulated cells maintain their ability to differentiate into multiple lineages, including chondrogenic, adipogenic, and osteogenic cell types. Together, these data demonstrate the promising potential of ELP–HA hydrogels for injectable stem cell transplantation and tissue regeneration.  相似文献   

2.
Nanocomposite hydrogels consist of a polymer matrix embedded with nanoparticles (NPs), which provide the hydrogels with unique bioactivities and mechanical properties. Incorporation of NPs via in situ precipitation in the polymer matrix further enhances these desirable hydrogel properties. However, the noncytocompatible pH, osmolality, and lengthy duration typically required for such in situ precipitation strategies preclude cell encapsulation in the resultant hydrogels. Bisphosphonate (BP) exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as magnesium ions (Mg2+). Here, the preparation of nanocomposite hydrogels via self‐assembly driven by bisphosphonate‐Mg2+ coordination is described. Upon mixing solutions of polymer bearing BPs, BP monomer (Ac‐BP), and Mg2+, this effective and dynamic coordination leads to the rapid self‐assembly of Ac‐BP‐Mg NPs which function as multivalent crosslinkers stabilize the resultant hydrogel structure at physiological pH. The obtained nanocomposite hydrogels are self‐healing and exhibit improved mechanical properties compared to hydrogels prepared by blending prefabricated NPs. Importantly, the hydrogels in this study allow the encapsulation of cells and subsequent injection without compromising the viability of seeded cells. Furthermore, the acrylate groups on the surface of Ac‐BP‐Mg NPs enable facile temporal control over the stiffness and crosslinking density of hydrogels via UV‐induced secondary crosslinking, and it is found that the delayed introduction of this secondary crosslinking enhances cell spreading and osteogenesis.  相似文献   

3.
Despite their potential in various fields of bioapplications, such as drug/cell delivery, tissue engineering, and regenerative medicine, hydrogels have often suffered from their weak mechanical properties, which are attributed to their single network of polymers. Here, supertough composite hydrogels are proposed consisting of alginate/polyacrylamide double‐network hydrogels embedded with mesoporous silica particles (SBA‐15). The supertoughness is derived from efficient energy dissipation through the multiple bondings, such as ionic crosslinking of alginate, covalent crosslinking of polyacrylamide, and van der Waals interactions and hydrogen bondings between SBA‐15 and the polymers. The superior mechanical properties of these hybrid hydrogels make it possible to maintain the hydrogel structure for a long period of time in a physiological solution. Based on their high mechanical stability, these hybrid hydrogels are demonstrated to exhibit on‐demand drug release, which is controlled by an external mechanical stimulation (both in vitro and in vivo). Moreover, different types of drugs can be separately loaded into the hydrogel network and mesopores of SBA‐15 and can be released with different speeds, suggesting that these hydrogels can also be used for multiple drug release.  相似文献   

4.
Current hyaluronic acid (HA) hydrogel systems often cause cytotoxicity to encapsulated cells and lack the adhesive property required for effective localization of transplanted cells in vivo. In addition, the injection of hydrogel into certain organs (e.g., liver, heart) induces tissue damage and hemorrhage. In this study, we describe a bioinspired, tissue‐adhesive hydrogel that overcomes the limitations of current HA hydrogels through its improved biocompatibility and potential for minimally invasive cell transplantation. HA functionalized with an adhesive catecholamine motif of mussel foot protein forms HA‐catechol (HA‐CA) hydrogel via oxidative crosslinking. HA‐CA hydrogel increases viability, reduces apoptosis, and enhances the function of two types of cells (human adipose‐derived stem cells and hepatocytes) compared with a typical HA hydrogel crosslinked by photopolymerization. Due to the strong tissue adhesiveness of the HA‐CA hydrogel, cells are easily and efficiently transplanted onto various tissues (e.g., liver and heart) without the need for injection. Stem cell therapy using the HA‐CA hydrogel increases angiogenesis in vivo, leading to improved treatment of ischemic diseases. HA‐CA hydrogel also improved hepatic functions of transplanted hepatocytes in vivo. Thus, this bioinspired, tissue‐adhesive HA hydrogel can enhance the efficacy of minimally invasive cell therapy.  相似文献   

5.
Photoluminescent hydrogels that function as both injectable scaffolds and fluorescent imaging probes hold great potential for therapeutics delivery and tissue engineering. Current fluorescent hydrogels are fabricated by either conjugating or doping a fluorescent dye, fluorescent protein, lanthanide chelate, or quantum dot into polymeric hydrogel matrix. Their biomedical applications are severely limited due to drawbacks such as photostability, carcinogenesis, and toxicity associated with the above‐mentioned dopants. Here, a successful development of dopant‐free photoluminescent hydrogels in situ formed by crosslinking of biocompatible polymer precursors is reported, which can be synthesized by incorporating an amino acid to a citric acid based polyester oligomer followed by functionalization of multivalent crosslinking group through a convenient transesterification reaction using Candida Antarctica Lipase B as a catalyst. It is demonstrated that the newly developed hydrogels possess tunable degradation, intrinsic photoluminescence, mechanical properties, and exhibit sustained release of various molecular weight dextrans. In vivo study shows that the hydrogels formed in situ following subcutaneous injection exhibit excellent biocompatibility and emit strong fluorescence under visible light excitation without the need of using any traditional organic dyes. Their in vivo degradation profiles are then depicted by noninvasively monitoring fluorescence intensity of the injected hydrogel implants.  相似文献   

6.
Clinical percutaneous delivery of synthetically engineered hydrogels remains limited due to challenges posed by crosslinking kinetics—too fast leads to delivery failure, too slow limits material retention. To overcome this challenge, supramolecular assembly is exploited to localize hydrogels at the injection site and introduce subsequent covalent crosslinking to control final material properties. Supramolecular gels are designed through the separate pendant modifications of hyaluronic acid (HA) by the guest–host pair cyclodextrin and adamantane, enabling shear‐thinning injection and high target site retention (>98%). Secondary covalent crosslinking occurs via addition of thiols and Michael‐acceptors (i.e., methacrylates, acrylates, vinyl sulfones) on HA and increases hydrogel moduli (E = 25.0 ± 4.5 kPa) and stability (>3.5 fold in vivo at 28 d). Application of the dual‐crosslinking hydrogel to a myocardial infarct model shows improved outcomes relative to untreated and supramolecular hydrogel alone controls, demonstrating its potential in a range of applications where the precise delivery of hydrogels with tunable properties is desired.  相似文献   

7.
Stem cells have shown substantial promise for various diseases in preclinical and clinical trials. However, low cell engraftment rates significantly limit the clinical translation of stem cell therapeutics. Numerous injectable hydrogels have been developed to enhance cell retention. Yet, the design of an ideal material with tunable properties that can mimic different tissue niches and regulate stem cell behaviors remains an unfulfilled promise. Here, an injectable poly(ethylene glycol) (PEG)–gelatin hydrogel is designed with highly tunable properties, from a multifunctional PEG‐based hyperbranched polymer and a commercially available thiolated gelatin. Spontaneous gelation occurs within about 2 min under the physiological condition. Murine adipose‐derived stem cells (ASCs) can be easily encapsulated into the hydrogel, which supports ASC growth and maintains their stemness. The hydrogel mechanical properties, biodegradability, and cellular responses can be finely controlled by changing hydrogel formulation and cell seeding densities. An animal study shows that the in situ formed hydrogel significantly improves cell retention, enhances angiogenesis, and accelerates wound closure using a murine wound healing model. These data suggest that injectable PEG–gelatin hydrogel can be used for regulating stem cell behaviors in 3D culture, delivering cells for wound healing and other tissue regeneration applications.  相似文献   

8.
Hydrogels have numerous biomedical applications including synthetic matrices for cell culture and tissue engineering. Here we report the development of hydrogel based multifunctional matrices that not only provide three‐dimensional structural support to the embedded cells but also can simultaneously provide potentially beneficial dynamic mechanical and electrical cues to the cells. A unique aspect of these matrices is that they undergo reversible, anisotropic bending dynamics in an electric field. The direction and magnitude of this bending can be tuned through the hydrogel crosslink density while maintaining the same electric potential gradient, allowing control over the mechanical strain imparted to the cells in a three‐dimensional environment. The conceptual design of these hydrogels was motivated through theoretical modeling of the osmotic pressure changes occurring at the gel‐solution interfaces in an electric field. These electro‐mechanical matrices support survival, proliferation, and differentiation of stem cells. Thus, these new three‐dimensional in vitro synthetic matrices, which mimic multiple aspects of the native cellular environment, take us one step closer to in vivo systems.  相似文献   

9.
Mimicking the hierarchically anisotropic structure and excellent mechanical properties of natural tissues, such as tendons and ligaments, using biomaterials is challenging. Despite recent achievements with anisotropic hydrogels, limitations remain because of difficulties in achieving both structural and mechanical characteristics simultaneously. A simple approach for fabricating hybrid hydrogels with a hierarchically anisotropic structure and superior mechanical properties that are reminiscent of tendons or ligaments is proposed. Alginate–polyacrylamide double‐network (DN) hydrogels incorporated with high aspect ratio mesoporous silica microparticles are stretched and fixed via subsequent drying and ionic crosslinking to achieve multiscale structures composed of an anisotropically aligned polymer network embedded with aligned microparticles. The mechanical properties of hydrogels can be further controlled by the degree of stretching, quantities, and functional groups of inorganic microparticles, and types of crosslinking cations. The subsequent reswelling results in a high water content (>80%) similar to that of natural tendons while high strength, modulus, and toughness are maintained. The optimized anisotropic hybrid hydrogel exhibits a tensile modulus of 7.2 MPa, strength of 1.3 MPa, and toughness of 1.4 MJ m?3 even in the swollen state, which is 451‐, 27‐, and 2.2 times higher than that observed in the non‐swollen tough DN hydrogel. This study suggests a new strategy for fabricating anisotropic hydrogels with superior mechanical properties to develop new biomaterials for artificial tendons or ligaments.  相似文献   

10.
The emerging 3D printing technique allows for tailoring hydrogel‐based soft structure tissue scaffolds for individualized therapy of osteochondral defects. However, the weak mechanical strength and uncontrollable swelling intrinsic to conventional hydrogels restrain their use as bioinks. Here, a high‐strength thermoresponsive supramolecular copolymer hydrogel is synthesized by one‐step copolymerization of dual hydrogen bonding monomers, N‐acryloyl glycinamide, and N‐[tris(hydroxymethyl)methyl] acrylamide. The obtained copolymer hydrogels demonstrate excellent mechanical properties—robust tensile strength (up to 0.41 MPa), large stretchability (up to 860%), and high compressive strength (up to 8.4 MPa). The rapid thermoreversible gel ? sol transition behavior makes this copolymer hydrogel suitable for direct 3D printing. Successful preparation of 3D‐printed biohybrid gradient hydrogel scaffolds is demonstrated with controllable 3D architecture, owing to shear thinning property which allows continuous extrusion through a needle and also immediate gelation of fluid upon deposition on the cooled substrate. Furthermore, this biohybrid gradient hydrogel scaffold printed with transforming growth factor beta 1 and β‐tricalciumphosphate on distinct layers facilitates the attachment, spreading, and chondrogenic and osteogenic differentiation of human bone marrow stem cells (hBMSCs) in vitro. The in vivo experiments reveal that the 3D‐printed biohybrid gradient hydrogel scaffolds significantly accelerate simultaneous regeneration of cartilage and subchondral bone in a rat model.  相似文献   

11.
Stimuli‐responsive hydrogels with decent electrical properties are a promising class of polymeric materials for a range of technological applications, such as electrical, electrochemical, and biomedical devices. In this paper, thermally responsive and conductive hybrid hydrogels are synthesized by in situ formation of continuous network of conductive polymer hydrogels crosslinked by phytic acid in poly(N‐isopropylacrylamide) matrix. The interpenetrating binary network structure provides the hybrid hydrogels with continuous transporting path for electrons, highly porous microstructure, strong interactions between two hydrogel networks, thus endowing the hybrid hydrogels with a unique combination of high electrical conductivity (up to 0.8 S m?1), high thermoresponsive sensitivity (significant volume change within several seconds), and greatly enhanced mechanical properties. This work demonstrates that the architecture of the filling phase in the hydrogel matrix and design of hybrid hydrogel structure play an important role in determining the performance of the resulting hybrid material. The attractive performance of these hybrid hydrogels is further demonstrated by the developed switcher device which suggests potential applications in stimuli‐responsive electronic devices.  相似文献   

12.
Anisotropic hydrogels mimicking the biological tissues with directional functions play essential roles in damage-tolerance, cell guidance and mass transport. However, conventional synthetic hydrogels often have an isotropic network structure, insufficient mechanical properties and lack of osteoconductivity, which greatly limit their applications for bone repair. Herein, inspired by natural bone and wood, a biomimetic strategy is presented to fabricate highly anisotropic, ultrastrong and stiff, and osteoconductive hydrogel composites via impregnation of biocompatible hydrogels into the delignified wood followed by in situ mineralization of hydroxyapatite (HAp) nanocrystals. The well-aligned cellulose nanofibrils endow the composites with highly anisotropic structural and mechanical properties. The strong intermolecular bonds of the aligned cellulose fibrils and hydrogel/wood interaction, and the reinforcing nanofillers of HAp enable the composites remarkable tensile strength of 67.8 MPa and elastic modulus of 670 MPa, three orders of magnitude higher than those of conventional alginate hydrogels. More importantly, the biocompatible hydrogel together with aligned HAp nanocrystals could effectively promote osteogenic differentiation in vitro and induce bone formation in vivo. The bone ingrowth into the hydrogel composite scaffold also yields good osteointegration. This study provides a low-cost, eco-friendly, feasible, and scalable approach for fabricating anisotropic, strong, stiff, hydrophilic, and osteoconductive hydrogel composites for bone repair.  相似文献   

13.
Stroke is the leading cause of adult disability with ≈80% being ischemic. Stem cell transplantation has been shown to improve functional recovery. However, the overall survival and differentiation of these cells is still low. The infarct cavity is an ideal location for transplantation as it is directly adjacent to the highly plastic peri‐infarct region. Direct transplantation of cells near the infarct cavity has resulted in low cell viability. Here, neural progenitor cells derived from induce pluripotent stem cells (iPS‐NPC) are delivered to the infarct cavity of stroked mice encapsulated in a hyaluronic acid hydrogel matrix to protect the cells. To improve the overall viability of transplanted cells, each step of the transplantation process is optimized. Hydrogel mechanics and cell injection parameters are investigated to determine their effects on the inflammatory response of the brain and cell viability, respectively. Using parameters that balanced the desire to keep surgery invasiveness minimal and cell viability high, iPS‐NPCs are transplanted to the stroke cavity of mice encapsulated in buffer or the hydrogel. While the hydrogel does not promote stem cell survival one week post‐transplantation, it does promote differentiation of the neural progenitor cells to neuroblasts.  相似文献   

14.
Hydrogels are commonly used as engineered extracellular matrix (ECM) mimics in applications ranging from tissue engineering to in vitro disease models. Ideal mechanisms used to crosslink ECM‐mimicking hydrogels do not interfere with the biology of the system. However, most common hydrogel crosslinking chemistries exhibit some form of crossreactivity. The field of bioorthogonal chemistry has arisen to address the need for highly specific and robust reactions in biological contexts. Accordingly, bioorthogonal crosslinking strategies are incorporated into hydrogel design, allowing for gentle and efficient encapsulation of cells in various hydrogel materials. Furthermore, the selective nature of bioorthogonal chemistries can permit dynamic modification of hydrogel materials in the presence of live cells and other biomolecules to alter matrix mechanical properties and biochemistry on demand. This review provides an overview of bioorthogonal strategies used to prepare cell‐encapsulating hydrogels and highlights the potential applications of bioorthogonal chemistries in the design of dynamic engineered ECMs.  相似文献   

15.
Elastin‐like polypeptides (ELPs) are promising for biomedical applications due to their unique thermoresponsive and elastic properties. ELP‐based hydrogels have been produced through chemical and enzymatic crosslinking or photocrosslinking of modified ELPs. Herein, a photocrosslinked ELP gel using only canonical amino acids is presented. The inclusion of thiols from a pair of cysteine residues in the ELP sequence allows disulfide bond formation upon exposure to UV light, leading to the formation of a highly elastic hydrogel. The physical properties of the resulting hydrogel such as mechanical properties and swelling behavior can be easily tuned by controlling ELP concentrations. The biocompatibility of the engineered ELP hydrogels is shown in vitro as well as corroborated in vivo with subcutaneous implantation of hydrogels in rats. ELP constructs demonstrate long‐term structural stability in vivo, and early and progressive host integration with no immune response, suggesting their potential for supporting wound repair. Ultimately, functionalized ELPs demonstrate the ability to function as an in vivo hemostatic material over bleeding wounds.  相似文献   

16.
Conductive hydrogel scaffolds have important applications for electroactive tissue repairs. However, the development of conductive hydrogel scaffolds tends to incorporate nonbiodegradable conductive nanomaterials that will remain in the human body as foreign matters. Herein, a biodegradable conductive hybrid hydrogel is demonstrated based on the integration of black phosphorus (BP) nanosheets into the hydrogel matrix. To address the challenge of applying BP nanosheets in tissue engineering due to its intrinsic instability, a polydopamine (PDA) modification method is developed to improve the stability. Moreover, PDA modification also enhances interfacial bonding between pristine BP nanosheets and the hydrogel matrix. The incorporation of polydopamine‐modified black phosphorous (BP@PDA) nanosheets into the gelatin methacryloyl (GelMA) hydrogels significantly enhances the electrical conductivity of the hydrogels and improves the cell migration of mesenchymal stem cells (MSCs) within the 3D scaffolds. On the basis of the gene expression and protein level assessments, the BP@PDA‐incorporated GelMA scaffold can significantly promote the differentiation of MSCs into neural‐like cells under the synergistic electrical stimulation. This strategy of integrating biodegradable conductive BP nanomaterials within a biocompatible hydrogel provides a new insight into the design of biomaterials for broad applications in tissue engineering of electroactive tissues, such as neural, cardiac, and skeletal muscle tissues.  相似文献   

17.
Protein hydrogels have attracted considerable interest due to their potential applications in biomedical engineering. Creating protein hydrogels with dynamic mechanical properties is challenging. Here, the engineering of a novel, rationally designed protein‐hydrogel is reported that translates molecular level protein folding‐unfolding conformational changes into macroscopic reversibly tunable mechanical properties based on a redox controlled protein folding‐unfolding switch. This novel protein folding switch is constructed from a designed mutually exclusive protein. Via oxidation and reduction of an engineered disulfide bond, the protein folding switch can switch its conformation between folded and unfolded states, leading to a drastic change of protein's effective chain length and mechanical compliance. This redox‐responsive protein can be readily photochemically crosslinked into solid hydrogels, in which molecular level conformational changes (folding‐unfolding) can result in significant macroscopic changes in hydrogel's physical and mechanical properties due to the change of the effective chain length between two crosslinking points in the protein hydrogel network. It is found that when reduced, the hydrogel swells and is mechanically compliant; when oxidized, it swells to a less extent and becomes resilient and stiffer, exhibiting an up to fivefold increase in its Young's modulus. The changes of the mechanical and physical properties of this hydrogel are fully reversible and can be cycled using redox potential. This novel protein hydrogel with dynamic mechanical and physical properties could find numerous applications in material sciences and tissue engineering.  相似文献   

18.
Conducting polymers (CPs) have exciting potential as scaffolds for tissue engineering, typically applied in regenerative medicine applications. In particular, the electrical properties of CPs has been shown to enhance nerve and muscle cell growth and regeneration. Hydrogels are particularly suitable candidates as scaffolds for tissue engineering because of their hydrated nature, their biocompatibility, and their tissue‐like mechanical properties. This study reports the development of the first single component CP hydrogel that is shown to combine both electro‐properties and hydrogel characteristics. Poly(3‐thiopheneacetic acid) hydrogels were fabricated by covalently crosslinking the polymer with 1,1′‐carbonyldiimidazole (CDI). Their swelling behavior was assessed and shown to display remarkable swelling capabilities (swelling ratios up to 850%). The mechanical properties of the networks were characterized as a function of the crosslinking density and were found to be comparable to those of muscle tissue. Hydrogels were found to be electroactive and conductive at physiological pH. Fibroblast and myoblast cells cultured on the hydrogel substrates were shown to adhere and proliferate. This is the first time that the potential of a single component CP hydrogel has been demonstrated for cell growth, opening the way for the development of new tissue engineering scaffolds.  相似文献   

19.
Injectable hydrogels are often preferred when designing carriers for cell therapy or developing new bio-ink formulations. Biosynthetic hydrogels, which are a class of materials made with a hybrid design strategy, can be advantageous for endowing injectability while maintaining biological activity of the material. The chemical modification required to make these gels injectable by specific crosslinking pathways can be challenging and also make the hydrogels inhospitable to cells. Therefore, most efforts to functionalize biosynthetic hydrogel precursors toward injectability in the presence of cells try to balance between chemical and biological functionality, in order to preserve cell compatibility while addressing the injectability design challenges. Accordingly, hydrogel crosslinking strategies have evolved to include the use of photoinitiated “click” chemistry or bio-orthogonal reactions with rapid gelation kinetics and minimal cyto-toxicity required when working with cell-compatible hydrogel systems. With many new injectable biosynthetic materials emerging, their impact in cell-based regenerative medicine and bioprinting is also becoming more apparent. This review covers the main strategies that are used to endow biosynthetic polymers with injectability through rapid, cyto-compatible physical or covalent crosslinking and the main considerations for using the resulting injectable hydrogels in cell therapy, tissue regeneration, and bioprinting.  相似文献   

20.
A family of biodegradable, biocompatible, water soluble cationic polymer precursor, arginine‐based unsaturated poly (ester amide) (Arg‐UPEA), is reported. Its incorporation into conventional Pluronic diacrylate (Pluronic‐DA) to form hybrid hydrogels for a significant improvement of the biological performance of current synthetic hydrogels is shown. The gel fraction (Gf), equilibrium swelling ratio (Qeq), compressive modulus, and interior morphology of the hybrid hydrogels as well as their interactions with human fibroblasts and bovine endothelial cells are fully investigated. It is found that the incorporation of Arg‐UPEA into Pluronic‐DA hydrogels significantly changes their Qeq, mechanical strength, and interior morphology. The structure–property relationship of the newly fabricated hybrid hydrogels is studied in terms of the chemical structure of the Arg‐UPEA precursor, i.e., the number of methylene groups in the Arg‐UPEA repeating unit. The results indicate that increasing methylene groups in the Arg‐UPEA repeating unit increases Qeq and decreases the compressive modulus of hydrogels. When compared with a pure Pluronic hydrogel, the cationic Arg‐UPEAs/Pluronic hybrid hydrogels greatly improve the attachment and proliferation of human fibroblasts on hydrogel surfaces. A bovine aortic endothelial cells (BAEC) viability test in the interior of the hydrogels shows that the positively charged hybrid hydrogels can significantly improve the viability of the encapsulated endothelial cell over a 2 week study period when compared with a pure Pluronic hydrogel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号