首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is great interest in self‐assembled oxide vertical nanocomposite films consisting of epitaxial spinel pillars in a single crystal perovskite matrix, due to their tunable electronic, magnetic, and multiferroic properties. Varying the composition or geometry of the pillars in the out‐of‐plane direction has not been previously reported but can provide new routes to tailoring their properties in three dimensions. In this work, ferrimagnetic epitaxial CoFe2O4, MgFe2O4, or NiFe2O4 spinel nanopillars with an out‐of‐plane modulation in their composition and shape are grown in a BiFeO3 matrix on a (001) SrTiO3 substrate using pulsed laser deposition. Changing the pillar composition during growth produces a homogeneous pillar composition due to cation interdiffusion, but this can be suppressed using a sufficiently thick blocking layer of BiFeO3 to produce bi‐pillar films containing for example a layer of magnetically hard CoFe2O4 pillars and a layer of magnetically soft MgFe2O4 pillars, which form in different locations. A thinner blocking layer enables contact between the top of the CoFe2O4 and the bottom of the MgFe2O4 which leads to correlated growth of the MgFe2O4 pillars directly above the CoFe2O4 pillars and provides a path for interdiffusion. The magnetic hysteresis of the nanocomposites is related to the pillar structure.  相似文献   

2.
Perovskite‐spinel epitaxial nanocomposite thin films are commonly grown on single crystal perovskite substrates, but integration onto a Si substrate can greatly increase their usefulness in devices. Epitaxial BiFeO3–CoFe2O4 nanocomposites consisting of CoFe2O4 pillars in a BiFeO3 matrix are grown on (001) Si with two types of buffer layers: molecular beam epitaxy (MBE)‐grown SrTiO3‐coated Si and pulsed‐laser‐deposited (PLD) Sr(Ti0.65Fe0.35)O3/CeO2/yttria‐stabilized ZrO2/Si. The nanocomposite grows with the same crystallographic orientation and morphology as that observed on single crystal SrTiO3 when the buffered Si substrates are smooth, but roughness of the Sr(Ti0.65Fe0.35)O3 promoted additional CoFe2O4 pillar orientations with 45° rotation. The nanocomposites on MBE‐buffered Si show very high magnetic anisotropy resulting from magnetoelastic effects, whereas the hysteresis of nanocomposites on PLD‐buffered Si can be understood as a combination of the hysteresis of the Sr(Ti0.65Fe0.35)O3 film and the CoFe2O4 pillars.  相似文献   

3.
Achieving self‐assembling/self‐organizing systems is the holy grail of nanotechnology. Spontaneous organization is not unique to the physical sciences since nature has been producing such systems for millions of years. In biological systems global patterns emerge from numerous interactions among lower‐level components of the system. The same is true for physical systems. In this review, the self‐assembly mechanisms of oxide nanocomposite films, as well as the advantageous functionalities that arise from such ordered structures, are explored.  相似文献   

4.
5.
6.
Tunable and enhanced low‐field magnetoresistance (LFMR) is observed in epitaxial (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 (LSMO:ZnO) self‐assembled vertically aligned nanocomposite (VAN) thin films, which have been grown on SrTiO3 (001) substrates by pulsed laser deposition (PLD). The enhanced LFMR properties of the VAN films reach values as high as 17.5% at 40 K and 30% at 154 K. They can be attributed to the spin‐polarized tunneling across the artificial vertical grain boundaries (GBs) introduced by the secondary ZnO nanocolumns and the enhancement of spin fluctuation depression at the spin‐disordered phase boundary regions. More interestingly, the vertical residual strain and the LFMR peak position of the VAN films can be systematically tuned by changing the deposition frequency. The tunability of the physical properties is associated with the vertical phase boundaries that change as a function of the deposition frequency. The results suggest that the tunable artificial vertical GB and spin‐disordered phase boundary in the unique VAN system with vertical ferromagnetic‐insulating‐ferromagnetic (FM‐I‐FM) structure provides a viable route to manipulate the low‐field magnetotransport properties in VAN films with favorable epitaxial quality.  相似文献   

7.
Self‐assembled membranes offer a promising alternative for conventional membrane fabrication, especially in the field of ultrafiltration. Here, a new pore‐making strategy is introduced involving stimuli responsive protein‐polymer conjugates self‐assembled across a large surface area using drying‐mediated interfacial self‐assembly. The membrane is flexible and assembled on porous supports. The protein used is the cage protein ferritin and resides within the polymer matrix. Upon denaturation of ferritin, a pore is formed which intrinsically is determined by the size of the protein and how it resides in the matrix. Due to the self‐assembly at interfaces, the membrane constitutes of only one layer resulting in a membrane thickness of 7 nm on average in the dry state. The membrane is stable up to at least 50 mbar transmembrane pressure, operating at a flux of about 21 000–25 000 L m?2 h?1 bar?1 and displayed a preferred size selectivity of particles below 20 nm. This approach diversifies membrane technology generating a platform for “smart” self‐assembled membranes.  相似文献   

8.
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room‐temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel α‐LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. It is observed that lithium (Li)‐doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1?xFeO3 ceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping‐induced phase separation and local ferroic properties in both the BFO‐LFO composite ceramics and self‐assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO‐LFO composites are supported by first principles calculations. These findings shed light on Li's role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites for future energy, sensing, and memory applications.  相似文献   

9.
The performance of bottom‐contact thin‐film transistor (TFT) structures lags behind that of top‐contact structures owing to the far greater contact resistance. The major sources of the contact resistance in bottom‐contact TFTs are believed to reflect a combination of non‐optimal semiconductor growth morphology on the metallic contact surface and the limited available charge injection area versus top‐contact geometries. As a part of an effort to understand the sources of high charge injection barriers in n‐channel TFTs, the influence of thiol metal contact treatment on the molecular‐level structures of such interfaces is investigated using hexamethyldisilazane (HMDS)‐treated SiO2 gate dielectrics. The focus is on the self‐assembled monolayer (SAM) contact surface treatment methods for bottom‐contact TFTs based on two archetypical n‐type semiconductors, α,ω‐diperfluorohexylquarterthiophene (DFH‐4T) and N,N′bis(n‐octyl)‐dicyanoperylene‐3,4:9,10‐bis(dicarboximide) (PDI‐8CN2). TFT performance can be greatly enhanced, to the level of the top contact device performance in terms of mobility, on/off ratio, and contact resistance. To analyze the molecular‐level film structural changes arising from the contact surface treatment, surface morphologies are characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). The high‐resolution STM images show that the growth orientation of the semiconductor molecules at the gold/SAM/semiconductor interface preserves the molecular long axis orientation along the substrate normal. As a result, the film microstructure is well‐organized for charge transport in the interfacial region.  相似文献   

10.
The controlled adsorption of the iron‐containing cage protein ferritin at the nanoscale using stimuli‐responsive self‐assembled diblock copolymer thin‐film templates is reported. The diblock copolymer used study consists of a cylinder‐forming polystyrene‐block‐polyferrocenylsilane (PS‐b‐PFS), with PFS as the minor block, and shows reversible redox properties. To prevent any spontaneous protein adsorption on either block, the electrolyte pH is selected to leave the ferritin negatively charged, and the protein concentration and solution ionic strength are carefully tuned. Selective adsorption of ferritin on the PFS domains of the self‐assembled thin films is then triggered in situ by applying a positive potential, simultaneously oxidizing the PFS and attracting the ferritin electrostatically.  相似文献   

11.
12.
Mixed self‐assembled monolayers (SAMs) with different ratios of –OH to –CH3 groups were used to modify the surface free energies of the Si substrates from 64 to 29 mN m–1. The TiO2 thin films were grown on the mixed SAM‐coated Si substrates by atomic layer deposition (ALD) from titanium isopropoxide and water. A two‐dimensional growth mode is observed on the SAMs‐coated substrates possessing high surface free energies. As the surface free energy decreases, a three‐dimensional growth mode begins to dominate. These observations indicate that the mixed SAMs can control the growth modes of the atomic layer deposition by modifying of the surface free energies of the substrates.  相似文献   

13.
The facile fabrication of thin and foldable self‐healing electronics on a poly(vinyl alcohol)/cellulose nanocrystal (PVA/CNC) composite film is reported. The self‐healing property of the PVA/CNC nanocomposite film can be activated by spraying water on the film surface, via dynamic formation of hydrogen bonding. The self‐healing efficiency of PVA/CNC is influenced by the content of CNC in the film, pH of the spraying solution, and the temperature. Via vacuum filtration and pattern transfer techniques, both a supercapacitor and a temperature sensor are fabricated on the same PVA/CNC film using gold nanosheet (AuNS) and polyaniline/multiwalled nanotube (PANI/MWCNT) electrodes. The fabricated supercapacitor with a gel‐type electrolyte exhibits a high electrochemical performance, and the thermoresistive temperature sensor shows a linear sensitivity with a fast response. Both devices exhibit superior mechanical stability and self‐healing property over 100 repetitive folding and five repetitive healing cycles, respectively, retaining the device performance owing to the percolated network of the conductive materials. This work demonstrates that our paper‐like thin PVA/CNC film‐based self‐healable devices can serve as highly durable and deformable electronics with longevity.  相似文献   

14.
2D nonlayered materials that possess appealing properties are entering the researchers' vision. However, direct access to the 2D level of these materials is still a great challenge due to the instrinsic isotropic chemical bond. This work presents the initially self‐limited epitaxial growth of ultrathin nonlayered CdS flakes (as thin as 6 nm) on mica substrate with a large domain size (>40 µm) by employing In2S3 as the passivation agent. Besides, the thickness and sizes of the products could be tunable by the addition level of In2S3 amount. The growth mechanism is evidenced via experiments and theoretical calculations, which is attributed to the surface distortion effect of In–S motif and the preference of local environments for In on the CdS (0001) surface. The photodetector designed on CdS flake demonstrates a high photoswitching ratio (up to 103), a high detectivity (D* ≈ 2.71 × 109 Jones), and fast photoresponse speed (τR = 14 ms, τD = 8 ms). The as‐proposed self‐limited epitaxial growth method opens a new avenue to synthetize 2D nonlayered materials and will promote their further applications in novel optoelectronic devices.  相似文献   

15.
In functional oxide materials so‐called molecular auxetic behavior is extremely rare. Here, it is reported in the CoFe2O4 spinel structure. A CoFe2O4 epitaxial thin film under compressive axial strain also reduces its cell dimensions in the transverse direction with a Poisson's ratio of ?0.85. A hinge‐like honeycomb network in the spinel structure is identified as being responsible for the negative Poisson's ratio. This phenomenon has a substantial effect on the functional properties of CoFe2O4 and enables the construction of a new class of nano‐devices.  相似文献   

16.
首先简短地综述了人们关于外延薄膜材料层状(layer-by-layer)生长机制的认识;给出了作者关于自组装量子点外延生长过程的评价和观点,强调了量子点自组装生长过程的复杂性和非线性性质。在对已经发表过的实验数据进一步分析的基础上,作者对一个量子点自组装生长形成所需要的时间作了一个估算,说明这是一个非常快的过程(<10-4s)。最后,作者提出了一个理解量子点自组装生长过程机制的模型。  相似文献   

17.
Self‐assembled nanocomposite films and coatings have huge potential for many functional and structural applications. However, control and manipulation of the nanostructures is still at very early stage. Here, guidelines are established for manipulating the types of composite structures that can be achieved. In order to do this, a well studied (YBa2Cu3O7‐δ)1‐x:(BaZrO3)x ‘model’ system is used. A switch from BaZrO3 nanorods in YBa2Cu3O7‐δ matrix to planar, horizontal layered plates is found with increasing x, with a transitional cross‐ply structure forming between these states at x = 0.4. The switch is related to a release in strain energy which builds up in the YBa2Cu3O7‐δ with increasing x. At x = 0.5, an unusually low strain state is observed in the planar composite structure, which is postulated to arise from a pseudo‐spinodal mechanism.  相似文献   

18.
Purely mechanical strain‐tunable microwave magnetism device with lightweight, flexible, and wearable is crucial for passive sensing systems and spintronic devices (noncontact), such as flexible microwave detectors, flexible microwave signal processing devices, and wearable mechanics‐magnetic sensors. Here, a flexible microwave magnetic CuFe2O4 (CuFO) epitaxial thin film with tunable ferromagnetic resonance (FMR) spectra is demonstrated by purely mechanical strains, including tensile and compressive strains, on flexible fluorophlogopite (Mica) substrates. Tensile and compressive strains show remarkable tuning effects of up‐regulation and down‐regulation on in‐plane FMR resonance field (Hr), which can be used for flexible tunable resonators and filters. The out‐of‐plane FMR spectra can also be tuned by mechanical bending, including Hr and absorption peak. The change of out‐of‐plane FMR spectra has great potential for flexible mechanics‐magnetic deformation sensors. Furthermore, a superior microwave magnetic stability and mechanical antifatigue character are obtained in the CuFO/Mica thin films. These flexible epitaxial CuFO thin films with tunable microwave magnetism and excellent mechanical durability are promising for the applications in flexible spintronics, microwave detectors, and oscillators.  相似文献   

19.
Spontaneous self‐assembly of a multication nanophase in another multication matrix phase is a promising bottom‐up approach to fabricate novel, nanocomposite structures for a range of applications. In an effort to understand the mechanisms for such self‐assembly, complimentary experimental and theoretical studies are reported to first understand and then control or guide the self‐assembly of insulating BaZrO3 (BZO) nanodots within REBa2Cu3O7–δ (RE = rare earth elements including Y, REBCO) superconducting films. The strain field developed around BZO nanodots embedded in the REBCO matrix is a key driving force dictating the self‐assembly of BZO nanodots along REBCO c‐axis. The size selection and spatial ordering of BZO self‐assembly are simulated using thermodynamic and kinetic models. The BZO self‐assembly is controllable by tuning the interphase strain field. REBCO superconducting films with BZO defect arrays self‐assembled to align in both vertical (REBCO c‐axis) and horizontal (REBCO ab‐planes) directions result in the maximized pinning and Jc performance for all field angles with smaller angular Jc anisotropy. The work has broad implications for the fabrication of controlled self‐assembled nanostructures for a range of applications via strain‐tuning.  相似文献   

20.
Dielectric surface modifications (DSMs) can improve the performance of organic thin‐film transistors (OTFTs) significantly. In order to gain a deeper understanding of this performance enhancement and to facilitate high‐mobility transistors, perylene based devices utilizing novel dielectric surface modifications have been produced. Novel DSMs, based on derivates of tridecyltrichlorosilane (TTS) with different functional end‐groups as well as polymeric dielectrics have been applied to tailor the adhesion energy of perylene. The resulting samples were characterized by electronic transport measurements, scanning probe microscopy, and X‐ray diffraction (XRD). Measurements of the surface free energy of the modified dielectric enabled the calculation of the adhesion energy of perylene upon these novel DSMs by the equation‐of‐state approach. These calculations demonstrate the successful tailoring of the adhesion energy. With these novel DSMs, perylene thin‐films with a superior film quality were produced, which enabled high‐performance perylene‐based OTFTs with high charge‐carrier mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号