共查询到20条相似文献,搜索用时 0 毫秒
1.
Drug Delivery: Remotely Controlled Red Blood Cell Carriers for Cancer Targeting and Near‐Infrared Light‐Triggered Drug Release in Combined Photothermal–Chemotherapy (Adv. Funct. Mater. 16/2015)
下载免费PDF全文

Xiaoqi Sun Chao Wang Min Gao Aiyan Hu Zhuang Liu 《Advanced functional materials》2015,25(16):2480-2480
2.
Quan Zhang Fang Liu Kim Truc Nguyen Xing Ma Xiaojun Wang Bengang Xing Yanli Zhao 《Advanced functional materials》2012,22(24):5144-5156
Multifunctional mesoporous silica nanoparticles are developed in order to deliver anticancer drugs to specific cancer cells in a targeted and controlled manner. The nanoparticle surface is functionalized with amino‐β‐cyclodextrin rings bridged by cleavable disulfide bonds, blocking drugs inside the mesopores of the nanoparticles. Poly(ethylene glycol) polymers, functionalized with an adamantane unit at one end and a folate unit at the other end, are immobilized onto the nanoparticle surface through strong β‐cyclodextrin/adamantane complexation. The non‐cytotoxic nanoparticles containing the folate targeting units are efficiently trapped by folate‐receptor‐rich HeLa cancer cells through receptormmediated endocytosis, while folate‐receptor‐poor human embryonic kidney 293 normal cells show much lower endocytosis towards nanoparticles under the same conditions. The nanoparticles endocytosed by the cancer cells can release loaded doxorubicin into the cells triggered by acidic endosomal pH. After the nanoparticles escape from the endosome and enter into the cytoplasm of cancer cells, the high concentration of glutathione in the cytoplasm can lead to the removal of the β‐cyclodextrin capping rings by cleaving the pre‐installed disulfide bonds, further promoting the release of doxorubicin from the drug carriers. The high drug‐delivery efficacy of the multifunctional nanoparticles is attributed to the co‐operative effects of folate‐mediated targeting and stimuli‐triggered drug release. The present delivery system capable of delivering drugs in a targeted and controlled manner provides a novel platform for the next generation of therapeutics. 相似文献
3.
Jie Wang Yue Dong Yiwei Li Wei Li Kai Cheng Yuan Qian Guoqiang Xu Xiaoshuai Zhang Liang Hu Peng Chen Wei Du Xiaojun Feng Yuan‐Di Zhao Zhihong Zhang Bi‐Feng Liu 《Advanced functional materials》2018,28(18)
Exosomes, naturally derived nanovesicles secreted from various cell types, can serve as an effective platform for the delivery of various cargoes, because of their intrinsic ability such as long blood circulation and immune escapinge. However, unlike conventional synthetic nanoparticles, drug release from exosomes at defined targets is not controllable. Moreover, endowing exosomes with satisfactory cancer‐targeting ability is highly challenging. Here, for the first time, a biological and synthetic hybrid designer exosome is described with photoresponsive functionalities based on a donor cell‐assisted membrane modification strategy. Practically, the designer exosome effectively accumulates at target tumor sites via dual ligand‐mediated endocytosis. Then the localized hyperthermia induced by the conjunct gold nanorods under near‐infrared irradiation impacts the permeability of exosome membrane to enhance drug release from exosomes, thus inhibiting tumor relapse in a programmable manner. The designer exosome combines the merits of both synthetic materials and the natural nanovesicles. It not only preserves the intrinsic functionalities of native exosome, but also gains multiple abilities for efficient tumor targeting, controlled release, and thermal therapy like synthetic nanocarriers. The versatile designer exosome can provide functional platforms by engineering with more multifarious functionalities from synthetic materials to achieve individualized precise cancer therapy in the future. 相似文献
4.
Quan Zhang Xiaoling Wang Pei‐Zhou Li Kim Truc Nguyen Xiao‐Jun Wang Zhong Luo Huacheng Zhang Nguan Soon Tan Yanli Zhao 《Advanced functional materials》2014,24(17):2450-2461
Engineering multifunctional nanocarriers for targeted drug delivery shows promising potentials to revolutionize the cancer chemotherapy. Simple methods to optimize physicochemical characteristics and surface composition of the drug nanocarriers need to be developed in order to tackle major challenges for smooth translation of suitable nanocarriers to clinical applications. Here, rational development and utilization of multifunctional mesoporous silica nanoparticles (MSNPs) for targeting MDA‐MB‐231 xenograft model breast cancer in vivo are reported. Uniform and redispersible poly(ethylene glycol)‐incorporated MSNPs with three different sizes (48, 72, 100 nm) are synthesized. They are then functionalized with amino‐β‐cyclodextrin bridged by cleavable disulfide bonds, where amino‐β‐cyclodextrin blocks drugs inside the mesopores. The incorporation of active folate targeting ligand onto 48 nm of multifunctional MSNPs (PEG‐MSNPs48‐CD‐PEG‐FA) leads to improved and selective uptake of the nanoparticles into tumor. Targeted drug delivery capability of PEG‐MSNPs48‐CD‐PEG‐FA is demonstrated by significant inhibition of the tumor growth in mice treated with doxorubicin‐loaded nanoparticles, where doxorubicin is released triggered by intracellular acidic pH and glutathione. Doxorubicin‐loaded PEG‐MSNPs48‐CD‐PEG‐FA exhibits better in vivo therapeutic efficacy as compared with free doxorubicin and non‐targeted nanoparticles. Current study presents successful utilization of multifunctional MSNP‐based drug nanocarriers for targeted cancer therapy in vivo. 相似文献
5.
Cancer Treatment: Biocompatible,Uniform, and Redispersible Mesoporous Silica Nanoparticles for Cancer‐Targeted Drug Delivery In Vivo (Adv. Funct. Mater. 17/2014)
下载免费PDF全文

Quan Zhang Xiaoling Wang Pei‐Zhou Li Kim Truc Nguyen Xiao‐Jun Wang Zhong Luo Huacheng Zhang Nguan Soon Tan Yanli Zhao 《Advanced functional materials》2014,24(17):2413-2413
6.
Xiaolei Wang Chaochao Wei Mengke Liu Ting Yang Weimin Zhou Ying Liu Kui Hong Shuhua Wang Hongbo Xin Xingwei Ding 《Advanced functional materials》2017,27(40)
Currently, most thrombolytic agents are limited by short circulation time and excessive dose needed for clinical therapy, which increases lethal risk for intracranial hemorrhage. Here, a near‐infrared‐triggered, controlled‐release system, using gold@mesoporous silica core–shell nanospheres (Au@MSNs) with phase‐changed material 1‐tetradecanol, is formulated to release urokinase plasminogen activators (uPA) on demand. The prepared system presents a sensitive system for releasing uPA, owing to an elevated temperature created by Au@MSNs‐induced photothermal effect. For in vitro study, a 3D printed vein vasculature is designed and fabricated to simulate the thrombolysis of system in blood vessel. Murine tail thrombus model is also built to evaluate thrombolysis in vivo. Consequently, localized hyperthermia is validated to possess an effective enhancement for thrombolysis. Therefore, according to the results, the fabricated system demonstrates two aspects of potential superiority: controlled uPA release for reducing risk of side effects, and hyperthermia‐enhanced thrombolysis locally for decreasing drug dosage. Assisted with thermal thrombolysis, the present formulated system shows a high efficiency, on‐demand drug release, and thus a safer protocol for thrombolytic therapy, which fits the developing trends of precision medicine. 相似文献
7.
Yan Peng Jia Kun Shi Fan Yang Jin Feng Liao Ru Xia Han Li Ping Yuan Ying Hao Meng Pan Yao Xiao Zhi Yong Qian Xia Wei Wei 《Advanced functional materials》2020,30(25)
For breast cancer patients who have undergone breast‐conserving surgery, effective treatments to prevent local recurrences and metastases is very essential. Here, a local injectable therapeutic platform based on a thermosensitive PLEL hydrogel with near‐infrared (NIR)‐stimulated drug release is developed to achieve synergistic photothermal immunotherapy for prevention of breast cancer postoperative relapse. Self‐assembled multifunctional nanoparticles (RIC NPs) are composed of three therapeutic components including indocyanine green, a photothermal agent; resiquimod (R848), a TLR‐7/8 agonist; and CPG ODNs, a TLR‐9 agonist. RIC NPs are physically incorporated into the thermosensitive PLEL hydrogel. The RIC NPs encapsulated PLEL hydrogel (RIC NPs@PLEL) is then locally injected into the tumor resection cavity for local photothermal therapy to ablate residue tumor tissues and produce tumor‐associated antigens. At the same time, NIR also triggers the release of immune components CPG ODNs and R848 from thermoresponsive hydrogels PLEL. The released immune components, together with tumor‐associated antigens, work as an in situ cancer vaccine for postsurgical immunotherapy by inducing effective and sustained antitumor immune effect. Overall, this work suggests that photothermal immunotherapy based on local hydrogel delivery system has great potential as a promising tool for the postsurgical management of breast cancer to prevent recurrences and metastases. 相似文献
8.
Guangbao Yang Xiaoqi Sun Jingjing Liu Liangzhu Feng Zhuang Liu 《Advanced functional materials》2016,26(26):4722-4732
Smart drug delivery systems with on‐demand drug release capability are rather attractive to realize highly specific cancer treatment. Herein, a novel light‐responsive drug delivery platform based on photosensitizer chlorin e6 (Ce6) doped mesoporous silica nanorods (CMSNRs) is developed for on‐demand light‐triggered drug release. In this design, CMSNRs are coated with bovine serum albumin (BSA) via a singlet oxygen (SO)‐sensitive bis‐(alkylthio)alkene (BATA) linker, and then modified with polyethylene glycol (PEG). The obtained CMSNR‐BATA‐BSA‐PEG, namely CMSNR‐B‐PEG, could act as a drug delivery carrier to load with either small drug molecules such as doxorubicin (DOX), or larger macromolecules such as cis‐Pt (IV) pre‐drug conjugated third generation dendrimer (G3‐Pt), both of which are sealed inside the mesoporous structure of nanorods by BSA coating. Upon 660 nm light irradiation with a rather low power density, CMSNRs with intrinsic Ce6 doping would generate SO to cleave BATA linker, inducing detachment of BSA‐PEG from the nanorod surface and thus triggering release of loaded DOX or G3‐Pt. As evidenced by both in vitro and in vivo experiments, such CMSNR‐B‐PEG with either DOX or G3‐Pt loading offers remarkable synergistic therapeutic effects in cancer treatment, owing to the on‐demand release of therapeutics specifically in the tumor under light irradiation. 相似文献
9.
Shan Yu Fung Hong Yang Priya T. Bhola Parisa Sadatmousavi Edward Muzar Mingyao Liu P. Chen 《Advanced functional materials》2009,19(1):74-83
The self‐assembling peptide EAK16‐II is capable of stabilizing hydrophobic compounds to form microcrystal suspensions in aqueous solution. Here, the ability of this peptide to stabilize the hydrophobic anticancer agent ellipticine is investigated. The formation of peptide‐ellipticine suspensions is monitored with time until equilibrium is reached. The equilibration time is found to be dependent on the peptide concentration. When the peptide concentration is close to its critical aggregation concentration, the equilibration time is minimal at 5 h. With different combinations of EAK16‐II and ellipticine concentrations, two molecular states (protonated or cyrstalline) of ellipticine could be stabilized. These different states of ellipticine significantly affect the release kinetics of ellipticine from the peptide‐ellipticine complex into the egg phosphatidylcholine vesicles, which are used to mimic cell membranes. The transfer rate of protonated ellipticine from the complex to the vesicles is much faster than that of crystalline ellipticine. This observation may also be related to the size of the resulting complexes as revealed from the scanning electron micrographs. In addition, the complexes with protonated ellipticine are found to have a better anticancer activity against two cancer cell lines, A549 and MCF‐7. This work forms the basis for studies of the peptide‐ellipticine suspensions in vitro and in vivo leading to future development of self‐assembling peptide‐based delivery of hydrophobic anticancer drugs. 相似文献
10.
11.
Ting Liu Lanhai Lai Zhenhuan Song Tianfeng Chen 《Advanced functional materials》2016,26(43):7775-7790
The rational design of cancer‐targeted and bioresponsive drug delivery vehicles can enhance the anticancer efficacy of conventional chemotherapeutics and reduce their adverse side effects. However, the complexity of precise delivery and the ability to trigger drug release in specific tumor sites remain a challenging puzzle. Here, a sequentially triggered nanosystem composed of HER2 antibody with disulfide linkage as a surface decorator (HER2@NPs) is constructed for precise drug delivery and the simultaneous inhibition of cancer growth, migration, and invasion. The nanosystem actively accumulates in cancer cells, undergoes self‐immolative cleavage in response to biological thiols, and is degraded to form small nanoparticles. After internalization by receptor‐mediated endocytosis, the nanoparticles further disassemble under acidic conditions in the presence of lysozymes and cell lysates, leading to sequentially triggered drug release. The released payload triggers overproduction of reactive oxygen species and activates p53 and MAPKs pathways to induce cancer cell apoptosis. Moreover, HER2@NPs markedly suppress the migration and invasion of human bladder cancer cells at nontoxic concentrations. HER2@NPs demonstrate potent in vivo anticancer efficacy, but show no obvious histological damage to the major organs. Taken together, this study provides a valid tactic for the rational design of sequentially triggered nanosystems for precise drug delivery and cancer therapy. 相似文献
12.
《Advanced functional materials》2018,28(36)
High‐security nanoplatform with enhanced therapy compliance is extremely promising for tumor. Herein, using a simple and high‐efficient self‐assembly method, a novel active‐targeting nanocluster probe, namely, Ag2S/chlorin e6 (Ce6)/DOX@DSPE‐mPEG2000‐folate (ACD‐FA) is synthesized. Experiments indicate that ACD‐FA is capable of specifically labeling tumor and guiding targeting ablation of the tumor via precise positioning from fluorescence and photoacoustic imaging. Importantly, the probe is endowed with a photodynamic “on‐off” effect, that is, Ag2S could effectively quench the fluorescence of chlorin e6 (89.5%) and inhibit release of 1O2 (92.7%), which is conducive to avoid unwanted phototoxicity during transhipment in the body, and only after nanocluster endocytosed by tumor cells could release Ce6 to produce 1O2. Moreover, ACD‐FA also achieves excellent acid‐responsive drug release, and exhibits eminent chemo‐photothermal and photodynamic effects upon laser irradiation. Compared with single or two treatment combining modalities, ACD‐FA could provide the best cancer therapeutic effect with a relatively low dose, because it made the most of combined effect from chemo‐photothermal and controlled photodynamic therapy, and significantly improves the drug compliance. Besides, the active‐targeting nanocluster notably reduces nonspecific toxicity of both doxorubicin and chlorin e6. Together, this study demonstrates the potency of a newly designed nanocluster for nonradioactive concomitant therapy with precise tumor‐targeting capability. 相似文献
13.
Yuanhao Wu Hongbo Wang Fei Gao Ziyang Xu Fengying Dai Wenguang Liu 《Advanced functional materials》2018,28(21)
The high locoregional breast cancer recurrence rate poses a significant risk for patients' survival. Injecting theranostic drugs‐laden soft tissue‐like hydrogels into the resected breast cavity is a promising strategy to achieve both precisely local therapy of breast cancer and reconstructive mammoplasty. In this work, a robust injectable thermoresponsive supramolecular poly(N‐acryloyl glycinamide‐co‐acrylamide) (PNAm) hydrogel bearing polydopamine (PDA) coated‐gold nanoparticles (AuNPs) and doxorubicin (DOX) is fabricated. The supramolecular polymer nanocomposite (SPN) hydrogels exhibit an excellent photothermal effect arising from PDA‐AuNPs that are tightly fixed to the hydrogel matrix via PDA and amide moieties in the network, built‐in near infrared (NIR) light‐triggered gel–sol transition as well as tunable drug delivery. The PNAm‐PDAAu‐DOX sol driven by prior heating is injected into the cavity of resected cancerous breasts of rats where gelation occurred rapidly while the temperature decreased to body temperature, thereby finely serving as a breast filler. During 4 week of implantation, interval NIR light irradiation can mediate photothermal effect and concertedly controllable DOX release, thus collectively preventing the recurrence of breast cancer. Remarkably, this stable remoldable SPN hydrogel facilitates the breast reconstruction and can be tracked by computed tomography (CT) imaging owing to the intrinsic X‐ray attenuation property of the loaded AuNPs. 相似文献
14.
15.
Minyu Zhou Shuhan Liu Yaqi Jiang Huanrong Ma Min Shi Quanshi Wang Wen Zhong Wangjun Liao Malcolm M. Q. Xing 《Advanced functional materials》2015,25(29):4730-4739
Single wall carbon nanotube (SWNT) based thermo‐sensitive hydrogel (SWNT‐GEL) is reported, which provides an injectable drug delivery system as well as a medium for photothermal transduction. SWNT‐hydrogel alone appears to be nontoxic on gastric cancer cells (BGC‐823 cell line) but leads to cell death with NIR radiation through a hyperthermia proapoptosis mechanism. By incorporating hyperthermia therapy and controlled in situ doxorubicin (DOX) release, DOX‐loaded SWNT‐hydrogel with NIR radiation proves higher tumor suppression rate on mice xenograft gastric tumor models compared to free DOX without detectable organ toxicity. The developed system demonstrates improved efficacy of chemotherapeutic drugs which overcomes systemic adverse reactions and presents immense potential for gastric cancer treatment. 相似文献
16.
Junxia Wang Yang Liu Yinchu Ma Chunyang Sun Wei Tao Yucai Wang Xianzhu Yang Jun Wang 《Advanced functional materials》2016,26(41):7516-7525
Near infrared (NIR) light‐activated supersensitive drug release via photothermal conversion is of particular interest due to its advantages in spatial and temporal control. However, such supersensitive drug release is rarely reported for polymeric nanoparticles. In this study, polymeric nanoparticles observed with flowable core can achieve NIR‐activated supersensitive drug release under the assistance of photothermal agent. It is demonstrated that only 5 s NIR irradiation (808 nm, 0.3 W cm?2) leads to 17.8% of doxorubicin (DOX) release, while its release is almost completely stopped when the NIR laser is switched off. In contrast, the control, poly(d ,l ‐lactide) nanoparticles with rigid cores, do not exhibit such supersensitive effect. It is demonstrated that intraparticle temperature is notably increased during photothermal conversion by detecting fluorescein lifetime using a time‐correlated single photon counting (TCSPC) technique, which is the main driving force for such supersensitive drug release from hydrophobic flow core. In contrast, rigid chain of nanoparticular core hinders drug diffusion. Furthermore, such NIR light‐activated supersensitive drug release is demonstrated, which significantly enhances its anticancer efficacy, resulting in overcoming of the resistance of cancer cells against DOX treatment in vitro and in vivo. This simple and highly universal strategy provides a new approach to fabricate NIR light‐activated supersensitive drug delivery systems. 相似文献
17.
Jae‐Min Oh Soo‐Jin Choi Go‐Eun Lee Sun‐Ho Han Jin‐Ho Choy 《Advanced functional materials》2009,19(10):1617-1624
The surface of layered double hydroxide nanoparticles, a potential drug‐delivery nanovehicle, is modified with the cancer‐cell‐specific ligand, folic acid. The surface modification is successfully accomplished through step‐by‐step coupling reactions with aminopropyltriethoxysilane and 1‐ethyl‐3‐(3‐dimethyl aminopropyl)‐carbodiimide. In order to evaluate the cancer‐cell targeting effect of folic‐acid‐grafted layered double hydroxide utilizing fluorescence‐related assay, both layered double hydroxide with and without folic acid moiety are labeled with fluorescein 5′‐isothiocyanate. The uptake of layered double hydroxide and folic acid conjugated into KB and A549 cells is visualized using fluorescence microscopy and measured by flow cytometry. Both chemical and biological assay results demonstrate that the folic acid molecules are indeed conjugated to the surface of layered double hydroxide and thus the selectivity of nanovehicles to cancer cells overexpressing folate receptors increases. In this study, it is suggested that layered double hydroxide nanoparticles can be used as drug‐delivery carriers with a targeting function due to the chemical conjugation with specific ligand. 相似文献
18.
Targeted Oral Drug Delivery: Chitosan–Alginate Microcapsules Provide Gastric Protection and Intestinal Release of ICAM‐1‐Targeting Nanocarriers,Enabling GI Targeting In Vivo (Adv. Funct. Mater. 20/2016)
下载免费PDF全文

Rasa Ghaffarian Edgar Pérez‐Herrero Hyuntaek Oh Srinivasa R. Raghavan Silvia Muro 《Advanced functional materials》2016,26(20):3373-3373
19.
Rasa Ghaffarian Edgar Pérez‐Herrero Hyuntaek Oh Srinivasa R. Raghavan Silvia Muro 《Advanced functional materials》2016,26(20):3382-3393
When administered intravenously, active targeting of drug nanocarriers (NCs) improves biodistribution and endocytosis. Targeting may also improve NC oral delivery to treat gastrointestinal (GI) pathologies or for systemic absorption. However, GI instability of targeting moieties compromises this strategy. This study explores whether encapsulation of antibody‐coated NCs in microcapsules would protect against gastric degradation, providing NC release and targeting in intestinal conditions. Nanoparticles coated with antibodies against intercellular adhesion molecule‐1 (anti‐ICAM) or nonspecific immunoglobulin G (IgG) are encapsulated in chitosan (shell) ‐ alginate (core) microcapsules. Encapsulation efficiency is >95% and NC relase from microcapsules in storage is <10%. There is minimal NC release at gastric pH (<10%) and burst release at intestinal pH (75%–85%). Encapsulated NCs afford increased protection against degradation (threefold to fourfold) and increased cell targeting (8–20‐fold) after release versus the nonencapsulated NCs. Mouse oral gavage shows that microencapsulation provides 38%–65% greater protection of anti‐ICAM NCs in the GI tract, 40% lower gastric retention, and fourfold to ninefold enhanced intestinal biodistribution versus nonencapsulated NCs. Therefore, microencapsulation of antibody‐targeted NCs may enable active targeting strategies to be effective in the context of oral drug delivery. 相似文献
20.
Stephan Schmidt Paulo A. L. Fernandes Bruno G. De Geest Mihaela Delcea Andre G. Skirtach Helmuth Möhwald Andreas Fery 《Advanced functional materials》2011,21(8):1411-1418
Direction‐specific release induced through osmotic pressure inside giant microcapsules is realized and monitored at high and low concentrations of encapsulated polymer. A clear correlation between the release kinetics upon opening the shell and encapsulated polymer concentration is observed. This has been independently confirmed by shell opening via nanoindentation and laser radiation. To quantify these observations, the internal pressure of the capsules is determined by analysis of mechanical tests performed via colloidal probe AFM. As expected, larger amounts of encapsulated material lead to increased internal pressures and enhanced release kinetics. The results show how drug release can be accelerated by encapsulation of osmotic pressure generating species. Such pressurized capsules systems show large ejection velocities and are envisioned as an inexpensive biolistic transfection device for in vitro applications. 相似文献