首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogels have been applied to improve stem cell therapy and drug delivery, but current hydrogel‐based delivery methods are inefficient in clinical settings due to difficulty in handling and treatment processes, and low off‐the‐shelf availability. To overcome these limitations, an adhesive hyaluronic acid (HA) hydrogel patch is developed that acts as a ready‐to‐use tissue tape for therapeutic application. The HA hydrogel patches functionalized with phenolic moieties (e.g., catechol, pyrogallol) exhibit stronger tissue adhesiveness, greater elastic modulus, and increased off‐the‐shelf availability, compared with their bulk solution gel form. With this strategy, stem cells are efficiently engrafted onto beating ischemic hearts without injection, resulting in enhanced angiogenesis in ischemic regions and improving cardiac functions. HA hydrogel patches facilitate the in vivo engraftment of stem cell–derived organoids. The off‐the‐shelf availability of the hydrogel patch is also demonstrated as a drug‐loaded ready‐made tissue tape for topical drug delivery to promote wound healing. Importantly, the applicability of the cross‐linker‐free HA patch is validated for therapeutic cell and drug delivery. The study suggests that bioinspired phenolic adhesive hydrogel patches can provide an innovative method for simple but highly effective cell and drug delivery, increasing the off‐the‐shelf availability—a critically important component for translation to clinical settings.  相似文献   

2.
Stem cell transplantation via direct injection is a minimally invasive strategy being explored for treatment of a variety of injuries and diseases. Injectable hydrogels with shear moduli <50 Pa can mechanically protect cells during the injection process; however, these weak gels typically biodegrade within 1–2 weeks, which may be too fast for many therapeutic applications. To address this limitation, an injectable hydrogel is designed that undergoes two different physical crosslinking mechanisms. The first crosslinking step occurs ex vivo through peptide‐based molecular recognition to encapsulate cells within a weak gel that provides mechanical protection from injection forces. The second crosslinking step occurs in situ to form a reinforcing network that significantly retards material biodegradation and prolongs cell retention time. Human adipose‐derived stem cells are transplanted into the subcutaneous space of a murine model using hand‐injection through a 28‐gauge syringe needle. Cells delivered within the double‐network hydrogel are significantly protected from mechanical damage and have significantly enhanced in vivo cell retention rates compared to delivery within saline and single network hydrogels. These results demonstrate that in situ formation of a reinforcing network within an already existing hydrogel can greatly improve transplanted cell retention, thereby enhancing potential regenerative medicine therapies.  相似文献   

3.
Shear‐thinning, self‐healing hydrogels are promising vehicles for therapeutic cargo delivery due to their ability to be injected using minimally invasive surgical procedures. An injectable hydrogel using a novel combination of dynamic covalent crosslinking with thermoresponsive engineered proteins is presented. Ex situ at room temperature, rapid gelation occurs through dynamic covalent hydrazone bonds by simply mixing two components: hydrazine‐modified elastin‐like protein (ELP) and aldehyde‐modified hyaluronic acid. This hydrogel provides significant mechanical protection to encapsulated human mesenchymal stem cells during syringe needle injection and rapidly recovers after injection to retain the cells homogeneously within a 3D environment. In situ, the ELP undergoes a thermal phase transition, as confirmed by coherent anti‐Stokes Raman scattering microscopy observation of dense ELP thermal aggregates. The formation of the secondary network reinforces the hydrogel and results in a tenfold slower erosion rate compared to a control hydrogel without secondary thermal crosslinking. This improved structural integrity enables cell culture for three weeks postinjection, and encapsulated cells maintain their ability to differentiate into multiple lineages, including chondrogenic, adipogenic, and osteogenic cell types. Together, these data demonstrate the promising potential of ELP–HA hydrogels for injectable stem cell transplantation and tissue regeneration.  相似文献   

4.
Exploitation of unique biochemical and biophysical properties of marine organisms has led to the development of functional biomaterials for various biomedical applications. Recently, ascidians have received great attention, owing to their extraordinary properties such as strong underwater adhesion and rapid self‐regeneration. Specific polypeptides containing 3,4,5‐trihydroxyphenylalanine (TOPA) in the blood cells of ascidians are associated with such intrinsic properties generated through complex oxidative processes. In this study, a bioinspired hydrogel platform is developed, demonstrating versatile applicability for tissue engineering and drug delivery, by conjugating pyrogallol (PG) moiety resembling ascidian TOPA to hyaluronic acid (HA). The HA–PG conjugate can be rapidly crosslinked by dual modes of oxidative mechanisms using an oxidant or pH control, resulting in hydrogels with different mechanical and physical characteristics. The versatile utility of HA–PG hydrogels formed via different crosslinking mechanisms is tested for different biomedical platforms, including microparticles for sustained drug delivery and tissue adhesive for noninvasive cell transplantation. With extraordinarily fast and different routes of PG oxidation, ascidian‐inspired HA–PG hydrogel system may provide a promising biomaterial platform for a wide range of biomedical applications.  相似文献   

5.
In this paper, a novel bioinspired stem cell‐laden microgel and related in vivo cartilage repair strategy are proposed. In particular, herein the preparation of new stem cell‐laden microgels, which can be injected into the chondral defect site in a minimally invasive way, and more importantly, capable of in situ self‐assembly into 3D macroporous scaffold without external stimuli, is presented. Specifically, thiolated gelatin (Gel‐SH) and vinyl sulfonated hyaluronic acid (HA‐VS) are first synthesized, and then stem cell‐laden gelatin/hyaluronic acid hybrid microgels (Gel‐HA) are generated by mixing Gel‐SH, HA‐VS, and bone mesenchymal stem cells (BMSCs) together via droplet‐based microfluidic approach, followed by gelation through fast and efficient thiol‐Michael addition reaction. The encapsulated BMSCs show high viability, proliferation, and chondrogenic differentiation potential in the microgels. Moreover, the in vitro test proves that BMSC‐laden Gel‐HA microgels are injectable without sacrificing BMSC viability, and more importantly, can self‐assemble into cartilage‐like scaffolds via cell–cell interconnectivity. In vivo experiments further confirm that the self‐assembled microgels can inhibit vascularization and hypertrophy. The Gel‐HA microgels and relevant cartilage repair strategy, i.e., injecting BMSC‐laden microgels separately and reconstructing chondral defect structure by microgel self‐assembly, provides a simple and effective method for cartilage tissue engineering and regenerative medicine.  相似文献   

6.
Biocompatible hydrogel adhesives with multifunctional properties, including injectability, fast self-healing, and suitable on-demand detachment, are highly desired for minimally invasive procedures, but such materials are still lacking. Herein, an injectable self-healing biocompatible hydrogel adhesive with thermoresponsive reversible adhesion based on two extracellular matrix-derived biopolymers, gelatin and chondroitin sulfate, is developed to be used as a surgical adhesive for sealing or reconnecting ruptured tissues. The resulting hydrogels present good self-healing and can be conveniently injected through needles. The strong tissue adhesion at physiological temperatures originates from the Schiff base and hydrogen bonding interactions between the hydrogel and tissue that can be weakened at low temperatures, thereby easily detaching the hydrogel from the tissue in the gelation state. In vivo and ex vivo rat model show that the adhesives can effectively seal bleeding wounds and fluid leakages in the absence of sutures or staples. Specifically, a proof of concept experiment in a damaged rat liver model demonstrates the ability of the adhesives to act as a suitable laparoscopic sealant for laparoscopic surgery. Overall, the adhesive has several advantages, including low cost and ease of production and application that make it an exceptional multifunctional tissue adhesive/sealant, effective in minimally invasive surgical applications.  相似文献   

7.
The use of hydrogel‐based bone adhesives has the potential to revolutionize the clinical treatment of bone repairs. However, severe deficiencies remain in current products, including cytotoxicity concerns, inappropriate mechanical strength, and poor fixation performance in wet biological environments. Inspired by the unique roles of glue molecules in the robust mechanical strength and fracture resistance of bone, a design strategy is proposed using novel mineral–organic bone adhesives for strong water‐resistant fixation and guided bone tissue regeneration. The system leveraged tannic acid (TA) as a phenolic glue molecule to spontaneously co‐assemble with silk fibroin (SF) and hydroxyapatite (HA) in order to fabricate the inorganic–organic hybrid hydrogel (named SF@TA@HA). The combination of the strong affinity between SF and TA along with sacrificial coordination bonds between TA and HA significantly improves the toughness and adhesion strength of the hydrogel by increasing the amount of energy dissipation at the nanoscale. This in turn facilitated adequate and stable fixation of bone fracture in wet biological environments. Furthermore, SF@TA@HA promotes the regeneration of bone defects at an early stage in vivo. This work presents a type of bioinspired bone adhesive that is able to provide stable fracture fixation and accelerated bone regeneration during the bone remodeling process.  相似文献   

8.
Bioinspired strategies for designing hydrogels with excellent adhesive performance have drawn much attention in biomedical applications. Here, bioinspired adhesive hydrogels tackified by independent nucleobase (adenine, thymine, guanine, cytosine, and uracil) from DNA and RNA are successfully explored. The nucleobase‐tackified hydrogels exhibit an excellent adhesive behavior for not only various solid substrates (polytetrafluoroethylene, plastics, rubbers, glasses, metals, and woods) but also biological tissues consisting of heart, liver, spleen, lung, kidney, bone, and muscle. The maximum adhesion strength of A‐, T‐, G‐, C‐, and U‐tackified hydrogels on the aluminum alloy surface is 780, 166, 250, 227, and 433 N m?1, respectively, superior to that of pure PAAm hydrogels (40 N m?1) after adhesive time of 10 min. It is anticipated that bioinspired hydrogels will play a significant role in the applications of wound dressing, medical electrodes, tissue adhesives, and portable equipment. Moreover, the bioinspired nucleobase‐tackified strategy would open a novel avenue for designing the next generation of soft and adhesive materials.  相似文献   

9.
Mesenchymal stem cells (MSCs) have been widely used for regenerative therapy. In most current clinical applications, MSCs are delivered by injection but face significant issues with cell viability and penetration into the target tissue due to a limited migration capacity. Some therapies have attempted to improve MSC stability by their encapsulation within biomaterials; however, these treatments still require an enormous number of cells to achieve therapeutic efficacy due to low efficiency. Additionally, while local injection allows for targeted delivery, injections with conventional syringes are highly invasive. Due to the challenges associated with stem cell delivery, a local and minimally invasive approach with high efficiency and improved cell viability is highly desired. In this study, a detachable hybrid microneedle depot (d‐HMND) for cell delivery is presented. The system consists of an array of microneedles with an outer poly(lactic‐co‐glycolic) acid shell and an internal gelatin methacryloyl (GelMA)‐MSC mixture (GMM). The GMM is characterized and optimized for cell viability and mechanical strength of the d‐HMND required to penetrate mouse skin tissue is also determined. MSC viability and function within the d‐HMND is characterized in vitro and the regenerative efficacy of the d‐HMND is demonstrated in vivo using a mouse skin wound model.  相似文献   

10.
Existing surgical tissue adhesives on the market cannot meet the desired demand for clinical operations due to their limited adhesivity or undesired cytotoxicity. A new bioadhesive is derived from the skin secretion of Andrias davidianus (SSAD). This bioinspired SSAD has significantly stronger tissue adhesion than the fibrin glue and improved elasticity and biocompatibility when compared to the cyanoacrylate glue both ex vivo and in vivo. Additionally, the SSAD‐based adhesive decreases skin wound healing time and promotes wound regeneration and angiogenesis. The SSAD‐based adhesive is completely degradable, strongly adhesive, and easily produced from a renewable source. Based on these favorable properties, the SSAD‐based bioadhesive demonstrates potential as a surgical bioadhesive for a broad range of medical applications.  相似文献   

11.
Direct injection is a minimally invasive method of stem cell transplantation for numerous injuries and diseases. However, despite its promising potential, its clinical translation is difficult due to the low cell retention and engraftment after injection. With high versatility, high‐resolution control and injectability, microfabrication of stem‐cell laden biomedical hydrogels holds great potential as minimally invasive technology. Herein, a strategy of microfluidics‐assisted technology entrapping bone marrow‐derived mesenchymal stem cells (BMSCs) and growth factors in photocrosslinkable gelatin (GelMA) microspheres to ultimately generate injectable osteogenic tissue constructs is presented. Additionally, it is demonstrated that the GelMA microspheres can sustain stem cell viability, support cell spreading inside the microspheres and migration from the interior to the surface as well as enhance cell proliferation. This finding shows that encapsulated cells have the potential to directly and actively participate in the regeneration process. Furthermore, it is found that BMSCs encapsulated in GelMA microspheres show enhanced osteogenesis in vitro and in vivo, associated with a significant increase in mineralization. In short, the proposed strategy can be utilized to facilitate bone regeneration with minimum invasiveness, and can potentially be applied along with other matrices for extended applications.  相似文献   

12.
Myocardial infarction (heart attack) is the number‐one killer of heart patients. Existing treatments do not address cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, the invention of a poly(l‐lactic acid)‐b‐poly(ethylene glycol)‐b‐poly(N‐Isopropylacrylamide) copolymer and its self‐assembly into nanofibrous gelling microspheres (NF‐GMS) is reported. The NF‐GMS undergo a thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM‐mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC‐derived CMs carried by NF‐GMS leads to a striking tenfold graft size increase over direct CM injection in rats, which is the highest reported engraftment to date. Furthermore, NF‐GMS‐carried CM transplantation dramatically reduces infarct size, enhances integration of transplanted CMs, stimulates vascularization in the infarct zone, and leads to a substantial recovery of cardiac function. The NF‐GMS may also be utilized in a variety of biomedical applications.  相似文献   

13.
Inspired by the coordinated multiple healing mechanism of the organism, a four‐armed benzaldehyde‐terminated polyethylene glycol and dodecyl‐modified chitosan hybrid hydrogel with vascular endothelial growth factor (VEGF) encapsulation are presented for efficient and versatile wound healing. The hybrid hydrogel is formed through the reversible Schiff base and possesses self‐healing capability. As the dodecyl tails can insert themselves into and be anchored onto the lipid bilayer of the cell membrane, the hybrid hydrogel has outstanding tissue adhesion, blood cell coagulation and hemostasis, anti‐infection, and cell recruitment functions. Moreover, by loading in and controllably releasing VEGF from the hybrid hydrogel, the processes of cell proliferation and tissue remodeling in the wound bed can be significantly improved. Based on an in vivo study of the multifunctional hybrid hydrogel, it is demonstrated that acute tissue injuries such as vessel bleeding and liver bleeding can be repaired immediately because of the outstanding adhesion and hemostasis features of the hydrogel. Moreover, the chronic wound‐healing process of an infectious full‐thickness skin defect model can also be significantly enhanced by promoting angiogenesis, collagen deposition, macrophage polarization, and granulation tissue formation. Thus, this multifunctional hybrid hydrogel is potentially valuable for clinical applications.  相似文献   

14.
Clinical percutaneous delivery of synthetically engineered hydrogels remains limited due to challenges posed by crosslinking kinetics—too fast leads to delivery failure, too slow limits material retention. To overcome this challenge, supramolecular assembly is exploited to localize hydrogels at the injection site and introduce subsequent covalent crosslinking to control final material properties. Supramolecular gels are designed through the separate pendant modifications of hyaluronic acid (HA) by the guest–host pair cyclodextrin and adamantane, enabling shear‐thinning injection and high target site retention (>98%). Secondary covalent crosslinking occurs via addition of thiols and Michael‐acceptors (i.e., methacrylates, acrylates, vinyl sulfones) on HA and increases hydrogel moduli (E = 25.0 ± 4.5 kPa) and stability (>3.5 fold in vivo at 28 d). Application of the dual‐crosslinking hydrogel to a myocardial infarct model shows improved outcomes relative to untreated and supramolecular hydrogel alone controls, demonstrating its potential in a range of applications where the precise delivery of hydrogels with tunable properties is desired.  相似文献   

15.
Stem cell therapeutics has emerged as a novel regenerative therapy for tissue repair in the last decade. However, dynamically tracking the transplanted stem cells in vivo remains a grand challenge for stem cell‐based regeneration medicine in full understanding the function and the fate of the stem cells. Herein, Ag2S quantum dots (QDs) in the second near‐infrared window (NIR‐II, 1.0–1.4 μm) are employed for dynamically tracking of human mesenchymal stem cells (hMSCs) in vivo with high sensitivity and high spatial and temporal resolution. As few as 1000 Ag2S QDs‐labeled hMSCs are detectable in vivo and their fluorescence intensity can maintain up to 30 days. The in situ translocation and dynamic distribution of transplanted hMSCs in the lung and liver can be monitored up to 14 days with a temporal resolution of 100 ms. The in vivo high‐resolution imaging indicates the heparin‐facilitated translocation of hMSCs from lung to liver as well as the long‐term retention of hMSCs in the liver contribute to the treatment of liver failure. The novel NIR‐II imaging offers a possibility of tracking stem cells in living animals with both high spatial and temporal resolution, and encourages the future clinical applications in imaging‐guided cell therapies.  相似文献   

16.
Stroke is the leading cause of adult disability with ≈80% being ischemic. Stem cell transplantation has been shown to improve functional recovery. However, the overall survival and differentiation of these cells is still low. The infarct cavity is an ideal location for transplantation as it is directly adjacent to the highly plastic peri‐infarct region. Direct transplantation of cells near the infarct cavity has resulted in low cell viability. Here, neural progenitor cells derived from induce pluripotent stem cells (iPS‐NPC) are delivered to the infarct cavity of stroked mice encapsulated in a hyaluronic acid hydrogel matrix to protect the cells. To improve the overall viability of transplanted cells, each step of the transplantation process is optimized. Hydrogel mechanics and cell injection parameters are investigated to determine their effects on the inflammatory response of the brain and cell viability, respectively. Using parameters that balanced the desire to keep surgery invasiveness minimal and cell viability high, iPS‐NPCs are transplanted to the stroke cavity of mice encapsulated in buffer or the hydrogel. While the hydrogel does not promote stem cell survival one week post‐transplantation, it does promote differentiation of the neural progenitor cells to neuroblasts.  相似文献   

17.
Stem cells have generated a great deal of excitement in cell‐based therapies. Here, a unique class of multifunctional nanoparticles (MFNPs) with both upconversion luminescence (UCL) and superparamagnetic properties is used for stem cell research. It is discovered that after being labeled with MFNPs, mouse mesenchymal stem cells (mMSCs) are able to maintain their viability and differentiation ability. In vivo UCL imaging of MFNP‐labeled mMSCs transplanted into animals is carried out, achieving ultrahigh tracking sensitivity with a detection limit as low as ≈10 cells in a mouse. Using both UCL optical and magnetic resonance (MR) imaging approaches, MFNP‐labeled mMSCs are tracked after being intraperitoneally injected into wound‐bearing mice under a magnetic field. The translocation of mMSCs from the injection site to the wound nearby the magnet is observed and, intriguingly, a remarkably improved tissue repair effect is observed as the result of magnetically induced accumulation of stem cells in the wound site. The results demonstrate the use MFNPs as novel multifunctional probes for labeling, in vivo tracking, and manipulation of stem cells, which is promising for imaging guided cell therapies and tissue engineering.  相似文献   

18.
Hydrogels can serve as matrices to mimic natural tissue function and be used for wide‐ranging applications such as tissue regeneration and drug delivery. Injectable hydrogels are particularly favorable because their uses are minimally invasive. However, creating moldable substance for injection often results in compromised function and stability. This study reports an injectable hydrogel system crosslinked by peptide–oligosaccharide noncovalent interaction. The dynamic network shows fast self‐healing, a property essential for injectability. Injected hydrogels in immunocompetent mice and release of encapsulated compound are monitored up to 9 months by magnetic resonance imaging (MRI) and optical imaging. This surprisingly stable hydrogel does not cause adverse inflammatory response, as analyzed by measuring cytokine levels, immunohistochemistry, and MRI. Hydrogel degradation is associated with invasion of macrophages and vascular formation. The facile synthesis, high biocompatibility, and stability of this injectable hydrogel can lead to various experimental and clinical applications in regenerative medicine and drug delivery.  相似文献   

19.
The diagnosis of liver diseases is generally carried out via ultrasound imaging, computed tomography, and magnetic resonance imaging. The emerging photoacoustic imaging is an attractive alternative to diagnose even early stage of liver diseases providing high‐resolution anatomical and functional information in deep tissue noninvasively. However, the liver has insufficient photoacoustic contrast due to low optical absorbance in the near‐infrared windows. Here, a new hyaluronate–silica nanoparticle (HA–SiNP) conjugate for liver‐specific delivery and imaging for the diagnosis of liver diseases is developed. The HA–SiNP conjugates show high liver‐specific targeting efficiency, strong optical absorbance near‐infrared windows, excellent biocompatibility, and biodegradability. The liver‐specific targeting efficiency is verified by in vitro cellular uptake test, and in vivo and ex vivo photoacoustic imaging. In vivo photoacoustic imaging shows that photoacoustic amplitude in the liver injected with HA–SiNP conjugates is 4.4 times higher than that of the liver injected with SiNP. The biocompatibility and biodegradability of HA–SiNP conjugates are verified by cell viability test, optical spectrum analysis of urine, and inductively coupled plasma‐mass spectroscopy (ICP‐MS) analysis. Taken together, HA–SiNP conjugates may be developed as a promising liver targeted photoacoustic imaging contrast agent and liver‐targeted drug delivery agent.  相似文献   

20.
A big challenge in cell culture is the non‐natural environment in which cells are routinely screened, making in vivo phenomena, such as cell invasion, difficult to understand and predict. To study cancer cell invasion, extracellular matrix (ECM) analogs with decoupled mechanical and chemical properties are required. Hyaluronic acid (HA)‐based hydrogels crosslinked with matrix‐metalloproteinase (MMP)‐cleavable peptides are developed to study MDA‐MB‐231 breast cancer cell invasion. Hydrogels are synthesized by reacting furan‐modified HA with bismaleimide peptide crosslinkers in a Diels–Alder click reaction. This new hydrogel takes advantage of the biomimetic properties of HA, which is overexpressed in breast cancer, and eliminates the use of nonadhesive crosslinkers, such as poly(ethylene glycol) (PEG). The crosslink (mechanical) and ligand (chemical) densities are varied independently to evaluate the effects of each parameter on cell migration. Increased crosslink density correlates with decreased MDA‐MB‐231 cell invasion whereas incorporation of MMP‐cleavable sequences within the peptide crosslinker enhances invasion. Increasing the ligand density of pendant GRGDS groups induces cell proliferation, but has no significant impact on invasion. By independently tuning the mechanical and chemical environment of ECM mimetic hydrogels, a platform is provided that recapitulates variable tissue properties and elucidates the role of the microenvironment in cancer cell invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号