首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferroelectric tunnel junctions (FTJs) are promising candidates for nonvolatile memories and memristor‐based computing circuits. Thus far, most research has focused on FTJs with a perovskite oxide ferroelectric tunnel barrier. As the need for high‐temperature epitaxial film growth challenges the technological application of such inorganic junctions, more easily processable organic ferroelectrics can serve as alternative if large tunneling electroresistance (TER) and good switching durability would persist. This study reports on the performance of FTJs with a spin‐coated ferroelectric P(VDF‐TrFE) copolymer tunnel barrier. The use of three different bottom electrodes, indium tin oxide (ITO), La0.67Sr0.33MnO3, (LSMO), and Nb‐doped SrTiO3 (STO) are compared and it is shown that the polarity and magnitude of the TER effect depend on their conductivity. The largest TER of up to 107% at room temperature is measured on FTJs with a semiconducting Nb‐doped STO electrode. This large switching effect is attributed to the formation of an extra barrier over the space charge region in the substrate. The organic FTJs exhibit good resistance retention and switching endurance up to 380 K, which is just below the ferroelectric Curie temperature of the P(VDF‐TrFE) barrier.  相似文献   

2.
A high‐performance spin filter tunnel junction composed of an epitaxial oxide heterostructure is reported. By independently controlling the magnetic orientations of ferromagnetic tunnel barrier and electrode layers, a tunnel magnetoresistance ratio exceeding 120% is obtained purely by the spin filtering effect. A newly introduced spin filter material, Pr0.8Ca0.2Mn1‐yCoyO3, is shown to be useful for building novel multibarrier spintronic tunnel devices due to its composition‐controlled magnetic hardness.  相似文献   

3.
Films of Hf0.5Z0.5O2 (HZO) contain a network of grain boundaries. In (111) HZO epitaxial films on (001) SrTiO3, for instance, twinned orthorhombic (o‐HZO) ferroelectric crystallites coexist with grain boundaries between o‐HZO and a residual paraelectric monoclinic (m‐HZO) phase. These grain boundaries contribute to the resistive switching response in addition to the genuine ferroelectric polarization switching and have detrimental effects on device performance. Here, it is shown that, by using suitable nanometric capping layer deposited on HZO film, a radical improvement of the operation window of the tunnel device can be achieved. Crystalline SrTiO3 and amorphous AlOx are explored as capping layers. It is observed that these layers conformally coat the HZO surface and allow to increase the yield and homogeneity of ferroelectric junctions while strengthening endurance. Data show that the capping layers block ionic‐like transport channels across grain boundaries. It is suggested that they act as oxygen suppliers to the oxygen‐getters grain boundaries in HZO. In this scenario it could be envisaged that these and other oxides could also be explored and tested for fully compatible CMOS technologies.  相似文献   

4.
Experimental results on entirely complex oxide ferromagnetic/ferroelectric/ferromagnetic tunnel junctions are presented in which the tunneling magnetoresistance is modified by applying low electric field pulses to the junctions. The experiments indicate that ionic displacements associated with the polarization reversal in the ferroelectric barrier affect the complex band structure at ferromagnetic–ferroelectric interfaces. The results are discussed in the framework of the theoretically predicted magnetoelectric interface effect and may lead to novel multistate memory devices.  相似文献   

5.
6.
The transfer of synthesized large‐area 2D materials to arbitrary substrates is expected to be a vital step for the development of flexible device fabrication processes. The currently used hazardous acid‐based wet chemical etching process for transferring large‐area MoS2 films is deemed to be unsuitable because it significantly degrades the material and damages growth substrates. Surface energy‐assisted water‐based transfer processes do not require corrosive chemicals during the transfer process; however, the concept is not investigated at the wafer scale due to a lack of both optimization and in‐depth understanding. In this study, a wafer‐scale water‐assisted transfer process for metal–organic chemical vapor‐deposited MoS2 films based on the hydrofluoric acid treatment of a SiO2 surface before the growth is demonstrated. Such surface treatment enhances the strongly adhering silanol groups, which allows the direct transfer of large‐area, continuous, and defect‐free MoS2 films; it also facilitates the reuse of growth substrate. The developed transfer method allows direct fabrication of flexible devices without the need for a polymeric supporting layer. It is believed that the proposed method can be an alternative defect‐ and residue‐free transfer method for the development of MoS2‐based next‐generation flexible devices.  相似文献   

7.
Persistent photoconductivity (PPC) is an intriguing physical phenomenon, where electric conduction is retained after the termination of electromagnetic radiation, which makes it appealing for applications in a wide range of optoelectronic devices. So far, PPC has been observed in bulk materials and thin‐film structures, where the current flows in the plane, limiting the magnitude of the effect. Here using epitaxial Nb:SrTiO3/Sm0.1Bi0.9FeO3/Pt junctions with a current‐perpendicular‐to‐plane geometry, a colossal X‐ray‐induced PPC (XPPC) is achieved with a magnitude of six orders. This PPC persists for days with negligible decay. Furthermore, the pristine insulating state could be fully recovered by thermal annealing for a few minutes. Based on the electric transport and microstructure analysis, this colossal XPPC effect is attributed to the X‐ray‐induced formation and ionization of oxygen vacancies, which drives nonvolatile modification of atomic configurations and results in the reduction of interfacial Schottky barriers. This mechanism differs from the conventional mechanism of photon‐enhanced carrier density/mobility in the current‐in‐plane structures. With their persistent nature, such ferroelectric/semiconductor heterojunctions open a new route toward X‐ray sensing and imaging applications.  相似文献   

8.
The reduction of metals from their oxides through solid electrochemical reactions usually requires a high temperature above 800 °C and a specially designed electrochemical structure. It is demonstrated that, in a simple field‐effect transistor (FET) structure, the redox reaction between Co metal and CoOx is reversible under a small electric field and can be achieved at a moderate temperature below 200 °C. The FETs functioning through the reversible redox reaction show nonvolatile behavior and a high on/off ratio of about 105. Moreover, the FETs show a threshold resistance switching behavior at high resistance states, but with opposite switching directions compared to normal metal/oxide/metal structures. The electric field induced metal–oxide transition may also be used for other energy storage applications.  相似文献   

9.
The fabrication of functional nanoplatforms for combating multidrug‐resistant bacteria is of vital importance. Among them, silver nanoparticles (Ag NPs) have shown an antibacterial effect; however, the remainder cores of Ag NPs after use might have a toxic effect on humans. Thus, Ag ions based materials have been fabricated to substitute Ag NPs for antibacterial applications. Nevertheless, the always‐on release state leads to the low biocompatibility, which limits their biomedical applications. In addition, the single effect also restricts their antibacterial ability. Herein, a powerful surface‐adaptive, on‐demand antimicrobial nanoplatform is fabricated by coating hyaluronic acid (HA) on Ag ions loaded photosensitive metal‐organic frameworks to exhibit a strong synergistic effect. The nanoplatform shows good biocompatibility with nontargeted cells, as negatively charged HA can prevent the release of Ag ions. While in the presence of targeted bacteria, the secreted hyaluronidase can degrade HA on the nanoplatform and produce positively charged nanoparticles, which display increased affinity to bacteria and show a strong synergistic antibacterial effect owing to the released Ag ions and generated reactive oxygen species under visible light irradiation. Importantly, due to the outstanding on‐demand antimicrobial performance, the nanoplatform also shows great effects on treating multidrug‐resistant bacteria infected wounds in mice models.  相似文献   

10.
Thickness‐driven electronic phase transitions are broadly observed in different types of functional perovskite heterostructures. However, uncertainty remains whether these effects are solely due to spatial confinement, broken symmetry, or rather to a change of structure with varying film thickness. Here, this study presents direct evidence for the relaxation of oxygen‐2p and Mn‐3d orbital (p–d) hybridization coupled to the layer‐dependent octahedral tilts within a La2/3Sr1/3MnO3 film driven by interfacial octahedral coupling. An enhanced Curie temperature is achieved by reducing the octahedral tilting via interface structure engineering. Atomically resolved lattice, electronic, and magnetic structures together with X‐ray absorption spectroscopy demonstrate the central role of thickness‐dependent p–d hybridization in the widely observed dimensionality effects present in correlated oxide heterostructures.  相似文献   

11.
Ferroelectrics are important technological materials with wide‐ranging applications in electronics, communication, health, and energy. While lead‐based ferroelectrics have remained the predominant mainstay of industry for decades, environmentally friendly lead‐free alternatives are limited due to relatively low Curie temperatures (T C) and/or high cost in many cases. Efforts have been made to enhance T C through strain engineering, often involving energy‐intensive and expensive fabrication of thin epitaxial films on lattice‐mismatched substrates. Here, a relatively simple and scalable sol–gel synthesis route to fabricate polycrystalline (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 nanowires within porous templates is presented, with an observed enhancement of T C up to ≈300 °C as compared to ≈90 °C in the bulk. By combining experiments and theoretical calculations, this effect is attributed to the volume reduction in the template‐grown nanowires that modifies the balance between different structural instabilities. The results offer a cost‐effective solution‐based approach for strain‐tuning in a promising lead‐free ferroelectric system, thus widening their current applicability.  相似文献   

12.
Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3?xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni0.3Co2.7O4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g?1 after 200 repetitive cycles at a small current of 100 mA g?1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g?1 can also be retained after 500 cycles at large currents of 2 and 5 A g?1, respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components.  相似文献   

13.
14.
A key challenge in advancing the design of hybrid nanostructures (HNs) lies in the difficulty in mastering the principle of selected hybrid formation, which is complicated not only by the size and shape variations of nanoparticles but also by the interfacial phenomena associated with surface ligands. Here this study elaborates the formation mechanism of HNs by a combined experimental and theoretical study employing multiscale simulations and shows how molecular information encoded on particle surface can be transferred into distinct composite patterns. The emergence of different HNs is found to be not only related to ligand binding strengths affecting the reaction kinetics but also the ligand–ligand interactions responsible for phase segregation. Unexpectedly, the sulfidation of Ag nanoparticles co‐stabilized by citrate/gallic acid with different molar ratios constantly produces heterodimers with faster reaction rate than the formation of core–shell structures when they are solely coated by citrate or gallic acid. The surprising result originates from the phase separation of two short surface ligands with large contrast in binding strengths as indicated by photoluminescence spectra and supported by the dissipative particle dynamics simulations. Hierarchical HNs consisting of a heterodimer shell with built‐in hot spots can be further synthesized using Au@Ag core–shell particles with mixed surface layers.  相似文献   

15.
The rational design and engineering of metal–organic framework (MOF) crystals with hollow features has been used for various applications. Here, a top‐down strategy is established to construct hollow MOFs via synergistic etching and surface functionalization by using phenolic acid. The macrosized cavities are created inside various types of MOFs without destroying the parent crystalline framework, as evidenced by electron microscopy and X‐ray diffraction. The modified MOFs are simultaneously coated by metal–phenolic films. This coating endows the MOFs with the additional functionality of responding to near infrared irradiation to produce heat for potential photothermal therapy applications.  相似文献   

16.
Molecules are proposed to be an efficient medium to host spin‐polarized carriers, due to their weak spin relaxation mechanisms. While relatively long spin lifetimes are measured in molecular devices, the most promising route toward device functionalization is to use the chemical versatility of molecules to achieve a deterministic control and manipulation of the electron spin. Here, by combining magnetotransport experiments with element‐specific X‐ray absorption spectroscopy, this study shows the ability of molecules to modify spin‐dependent properties at the interface level via metal–molecule hybridization pathways. In particular, it is described how the formation of hybrid states determines the spin polarization at the relevant spin valve interfaces, allowing the control of macroscopic device parameters such as the sign and magnitude of the magnetoresistance. These results consolidate the application of the spinterface concept in a fully functional device platform.  相似文献   

17.
The finding of an extremely large magnetoresistance effect on silicon based p–n junction with vertical geometry over a wide range of temperatures and magnetic fields is reported. A 2500% magnetoresistance ratio of the Si p–n junction is observed at room temperature with a magnetic field of 5 T and the applied bias voltage of only 6 V, while a magnetoresistance ratio of 25 000% is achieved at 100 K. The current‐voltage (I–V) behaviors under various external magnetic fields obey an exponential relationship, and the magnetoresistance effect is significantly enhanced by both contributions of the electric field inhomogeneity and carrier concentrations variation. Theoretical analysis using classical p–n junction transport equation is adapted to describe the I–V curves of the p–n junction at different magnetic fields and reveals that the large magnetoresistance effect origins from a change of space‐charge region in the p–n junction induced by external magnetic field. The results indicate that the conventional p–n junction is proposed to be used as a multifunctional material based on the interplay between electronic and magnetic response, which is significant for future magneto‐electronics in the semiconductor industry.  相似文献   

18.
Copper nanoparticles grafted on a silicon wafer are fabricated by reducing copper ions with silicon–hydrogen bonds and assembling them in situ on the Si wafer. The nanoparticles, with an average size of 20 nm, grow uniformly and densely on the Si wafer, and they are used as substrates for surface‐enhanced Raman scattering. These substrates exhibit excellent enhancement in the low concentration detection (1 × 10?9 M ) of rhodamine 6G with an enhancement factor (EF) of 2.29 × 107 and a relative standard deviation (RSD) of <20%. They are also employed to detect sudan‐I dye with distinguished sensitivity and uniformity. The results are interesting and significant because Cu substrates are otherwise thought to be poor. These effects might provide new ways to think about surface‐enhanced Raman scattering based on Cu substrates.  相似文献   

19.
High‐density memory is integral in solid‐state electronics. 2D ferroelectrics offer a new platform for developing ultrathin electronic devices with nonvolatile functionality. Recent experiments on layered α‐In2Se3 confirm its room‐temperature out‐of‐plane ferroelectricity under ambient conditions. Here, a nonvolatile memory effect in a hybrid 2D ferroelectric field‐effect transistor (FeFET) made of ultrathin α‐In2Se3 and graphene is demonstrated. The resistance of the graphene channel in the FeFET is effectively controllable and retentive due to the electrostatic doping, which stems from the electric polarization of the ferroelectric α‐In2Se3. The electronic logic bit can be represented and stored with different orientations of electric dipoles in the top‐gate ferroelectric. The 2D FeFET can be randomly rewritten over more than 105 cycles without losing the nonvolatility. The approach demonstrates a prototype of rewritable nonvolatile memory with ferroelectricity in van der Waals 2D materials.  相似文献   

20.
Ferroelectrics undergo a size‐driven phase transition at the nanoscale below which the spontaneous polarization, their defining property, irrevocably ceases. This threshold often referred to as the superparaelectric limit has tremendous technological relevance in an era of progressing integration. Just as the balance of short‐range elastic and long‐range electrostatic ordering in bulk, the critical size depends on temperature. Room‐temperature tip‐enhanced Raman spectroscopy (TERS) imaging of individual lead titanate (PbTiO3) nanoislands is reported with a spatial resolution of ≈3 nm. Monitoring the spectral shift of the gold‐tip enhanced luminescence, which depends on the local refractive index, images grains composing the nanoislands. The wavelength of the enhanced luminescence shifts between the grains and their boundaries indicating the predicted core–shell structure of ferroelectric and paraelectric phase. The shear force configuration rules out the distance dependence of capacitive plasmonic coupling between tip and substrate as the origin of the observed shift. As the reported temperature‐changes in nonresonant TERS do not account for noticeable thermal effects, the underlying, even though weak, tip‐enhanced Raman spectrum of the grain core reflects PbTiO3 close to the ferroelectric‐to‐paraelectric phase transition which is primarily related to the finite size of the grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号