共查询到20条相似文献,搜索用时 46 毫秒
1.
Adrian Hunt Dmitriy A. Dikin Ernst Z. Kurmaev Teak D. Boyko Paul Bazylewski Gap Soo Chang Alexander Moewes 《Advanced functional materials》2012,22(18):3950-3957
The electronic structure and chemical bonding of three differently prepared samples of graphene oxide paper‐like sheets are studied. Two are created by water filtration of fully oxidized graphene sheets, although one is later intercalated with dodecylamine. The third is created by reducing graphene oxide with hydrazine hydrate. The spectroscopic fingerprints of the aligned epoxide functional groups that unzip the carbon basal plane are found. This unzipping appears to be a result of aging, and the extent to which the basal plane is unzipped can be controlled via the preparation method. In particular, reduction with hydrazine enhances line defect formation, whereas intercalation inhibits the process.The hydroxyl functional group also has a tendency to gather in zones of dense oxidation on the carbon basal plane, a predilection that is not shared by the other prominent functional group species. Finally, the non‐functionalized carbon sites exhibit very similar bonding despite the increase in the sp2/sp3 ratio, confirming that reduction alone is insufficient for producing pristine graphene from graphene oxide. These results are obtained by directly probing the electronic structure of the graphene oxide samples via X‐ray absorption near‐edge structure spectroscopy (XANES) and resonant X‐ray emission spectroscopy (RXES). This work has important significance for the development of graphene oxide as a band gap‐engineered electronic material, as preparation methodology strongly affects not only the initial condition of the sample, but how the electronic structure evolves over time. 相似文献
2.
Spyros N. Yannopoulos Angeliki Siokou Nektarios K. Nasikas Vassilios Dracopoulos Fotini Ravani George N. Papatheodorou 《Advanced functional materials》2012,22(1):113-120
The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large‐area, low‐strain epitaxial graphene that is still lacking. Here, a novel method for the fast, single‐step epitaxial growth of large‐area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 μm) as the heating source is reported. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost‐effective in that it does not necessitate SiC pre‐treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low–strain graphene film is demonstrated by scanning electron microscopy, X‐ray photoelectron spectroscopy, secondary ion‐mass spectroscopy, and Raman spectroscopy. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2‐laser‐induced graphene growth and the lack of strict sample–environment conditions. 相似文献
3.
Peter S. Toth Matěj Velický Quentin M. Ramasse Despoina M. Kepaptsoglou Robert A. W. Dryfe 《Advanced functional materials》2015,25(19):2899-2909
Low‐dimensional carbon materials, i.e., graphene and its functionalization with a number of semiconductor or conductor materials, such as noble metal nanostructures, have primary importance for their potential exploitation as electro‐active materials, i.e., as new generation catalysts. Here, low‐cost, solution chemistry‐based, two‐step functionalization of an individual, free‐standing, chemical vapor‐deposited graphene monolayer is reported, with noble metal (Au, Pt, Pd) nanoparticles to build up two‐side decorated graphene‐based metal nanoclusters. Either the same metal (symmetric decoration) or different metals (asymmetric decoration) are used for the preparation of bimetal graphene sandwiches, which are adsorbed at the liquid/liquid (organic/water) interface. The successful fabrication of such dual‐decorated graphene‐based metal nanocomposites is confirmed using various microscopic techniques (scanning electron and atomic force microscopies) and several spectroscopic methods (x‐ray photoelectron, energy dispersive x‐ray, mapping mode Raman spectroscopy, and electron energy loss spectroscopy). Taken together, it is inferred from these techniques that the location of deposited metal nanoparticles is on opposite sides of the graphene. 相似文献
4.
Da Zhan Li Sun Zhen Hua Ni Lei Liu Xiao Feng Fan Yingying Wang Ting Yu Yeng Ming Lam Wei Huang Ze Xiang Shen 《Advanced functional materials》2010,20(20):3504-3509
Graphene has attracted much attention since its first discovery in 2004. Various approaches have been proposed to control its physical and electronic properties. Here, it is reported that graphene‐based intercalation is an efficient method to modify the electronic properties of few‐layer graphene (FLG). FeCl3 intercalated FLGs are successfully prepared by the two‐zone vapor transport method. This is the first report on full intercalation for graphene samples. The features of the Raman G peak of such FLG intercalation compounds (FLGIC) are in good agreement with their full intercalation structures. The FLGICs present single Lorentzian 2D peaks, similar to that of single‐layer graphene, indicating the loss of electronic coupling between adjacent graphene layers. First principle calculations further reveal that the band structure of FLGIC is similar to single‐layer graphene but with a strong doping effect due to the charge transfer from graphene to FeCl3. The successful fabrication of FLGIC opens a new way to modify properties of FLG for fundamental studies and future applications. 相似文献
5.
Im Deok Jung Min Kook Cho Kong Myeong Bae Sang Min Lee Phill Gu Jung Ho Kyung Kim Sung Sik Kim Jong Soo Ko 《ETRI Journal》2008,30(5):747-749
We introduce a pixel‐structured scintillator realized on a flexible polymeric substrate and demonstrate its feasibility as an X‐ray converter when it is coupled to photosensitive elements. The sample was prepared by filling Gd2O2S:Tb scintillation material into a square‐pore‐shape cavity array fabricated with polyethylene. For comparison, a sample with the conventional continuous geometry was also prepared. Although the pixelated geometry showed X‐ray sensitivity of about 58% compared with the conventional geometry, the resolving power was improved by about 70% above a spatial frequency of 3 mm?1. The spatial frequency at 10% of the modulation‐transfer function was about 6 mm?1. 相似文献
6.
Emerging In Situ and Operando Nanoscale X‐Ray Imaging Techniques for Energy Storage Materials 下载免费PDF全文
Electrical vehicles (EVs) are an attractive option for moving towards a CO2 neutral transportation sector, but in order for widespread commercial use of EVs, the cost of electrical energy storage (i.e., batteries) must be reduced and the energy storage capacity must be increased. New, higher performing but Earth abundant electrodes are needed to accomplish this goal. To aid the development of these materials, in situ characterization to understand battery operation and failure is essential. Since electrodes are inherently heterogeneous, with a range of relevant length scales, imaging is a necessary component of the suite of characterization methods. In this Feature Article, the rapidly growing and developing field of X‐ray based microscopy (XM) techniques is described and reviewed focusing on in situ and operando adaptations. Further, in situ transmission electron microscopy (TEM) is briefly discussed in this context and its complement to XM is emphasized. Finally, a perspective is given on some emerging X‐ray based imaging approaches for energy storage materials. 相似文献
7.
Dimas G. de Oteyza Juan M. García‐Lastra Martina Corso Bryan P. Doyle Luca Floreano Alberto Morgante Yutaka Wakayama Angel Rubio J. Enrique Ortega 《Advanced functional materials》2009,19(22):3567-3573
Charge transfer processes between donor–acceptor complexes and metallic electrodes are at the heart of novel organic optoelectronic devices such as solar cells. Here, a combined approach of surface‐sensitive microscopy, synchrotron radiation spectroscopy, and state‐of‐the‐art ab initio calculations is used to demonstrate the delicate balance that exists between intermolecular and molecule–substrate interactions, hybridization, and charge transfer in model donor–acceptor assemblies at metal‐organic interfaces. It is shown that charge transfer and chemical properties of interfaces based on single component layers cannot be naively extrapolated to binary donor–acceptor assemblies. In particular, studying the self‐assembly of supramolecular nanostructures on Cu(111), composed of fluorinated copper‐phthalocyanines (F16CuPc) and diindenoperylene (DIP), it is found that, in reference to the associated single component layers, the donor (DIP) decouples electronically from the metal surface, while the acceptor (F16CuPc) suffers strong hybridization with the substrate. 相似文献
8.
Andrea Ciavatti Laura Basiric Ilaria Fratelli Stefano Lai Piero Cosseddu Annalisa Bonfiglio John E. Anthony Beatrice Fraboni 《Advanced functional materials》2019,29(21)
The attention focused on the application of organic electronics for the detection of ionizing radiation is rapidly growing among the international scientific community, due to the great potential of organic technology to enable large‐area conformable sensor panels. However, high‐energy photon absorption is challenging as organic materials are constituted of atoms with low atomic numbers. Here it is reported how, by synthesizing new solution‐processable organic molecules derived from 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) and 2,8‐difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene, with Ge‐substitution in place of the Si atoms to increase the material atomic number, it is possible to boost the X‐ray detection performance of organic thin films on flexible plastic substrates. Bis(triisopropylgermylethynyl)‐pentacene based flexible organic thin film transistors show high electrical performance with higher mobility (0.4 cm2 V?1 s?1) and enhanced X‐ray sensitivity, up to 9.0 × 105 µC Gy?1 cm?3, with respect to TIPS‐pentacene‐based detectors. Moreover, similar results are obtained for 5,11‐bis(triethylgermylethynyl)anthradithiophene devices, confirming that the proposed strategy, that is, increasing the atomic number of organic molecules by chemical tailoring to improve X‐ray sensitivity, can be generalized to organic thin film detectors, combining high X‐ray absorption, mechanical flexibility, and large‐area processing. 相似文献
9.
Danil W. Boukhvalov Raju Edla Anna Cupolillo Vito Fabio Raman Sankar Yanglin Zhu Zhiqiang Mao Jin Hu Piero Torelli Gennaro Chiarello Luca Ottaviano Antonio Politano 《Advanced functional materials》2019,29(18)
Materials exhibiting nodal‐line fermions promise superb impact on technology for the prospect of dissipationless spintronic devices. Among nodal‐line semimetals, the ZrSiX (X = S, Se, Te) class is the most suitable candidate for such applications. However, the surface chemical reactivity of ZrSiS and ZrSiSe has not been explored yet. Here, by combining different surface‐science tools and density functional theory, it is demonstrated that the formation of ZrSiS and ZrSiSe surfaces by cleavage is accompanied by the washing up of the exotic topological bands, giving rise to the nodal line. Moreover, while the ZrSiS has a termination layer with both Zr and S atoms, in the ZrSiSe surface, reconstruction occurs with the appearance of Si surface atoms, which is particularly prone to oxidation. It is demonstrated that the chemical activity of ZrSiX compounds is mostly determined by the interaction of the Si layer with the ZrX sublayer. A suitable encapsulation for ZrSiX should not only preserve their surfaces from interaction with oxidative species, but also provide a saturation of dangling bonds with minimal distortion of the surface. 相似文献
10.
2D Hybrid Perovskite Ferroelectric Enables Highly Sensitive X‐Ray Detection with Low Driving Voltage
Chengmin Ji Sasa Wang Yaxing Wang Huaixi Chen Lina Li Zhihua Sun Yan Sui Shuao Wang Junhua Luo 《Advanced functional materials》2020,30(5)
X‐ray detectors with high sensitivity are of great significance in both civil and military fields. Over the past decades, great efforts have been made to improve the sensitivity in conventional inorganic materials, but mainly at the cost of increasing the energy consumption with a quite high operating voltage. Developing photosensitive ferroelectrics directly as detector materials may be a conceptually new strategy in view of the strong ferroelectric spontaneous polarization (Ps) that assists photoinduced carriers separation and transport. A high‐performance X‐ray detector in 2D hybrid halide perovskite ferroelectric (C4H9NH3)2(C2H5NH3)2Pb3Br10 ( BA2EA2Pb3Br10 ) (Ps = 5 µC cm?2) is fabricated and exhibits an ultrahigh X‐ray sensitivity up to 6.8 × 103 µC Gyair?1 cm?2 even at a relatively low operating voltage, which is over 300‐fold larger than that of state‐of‐the‐art α‐Se X‐ray detectors. Such a brilliant figure‐of‐merit is largely attributed to the superior mobility–lifetime products associated with the strong ferroelectric polarization of BA2EA2Pb3Br10 . As pioneering work, these findings inform the exploration of hybrid halide perovskite ferroelectrics toward high‐performance photoelectronic devices. 相似文献
11.
Fei Ye Hong Lin Haodi Wu Lu Zhu Zhanfeng Huang Dan Ouyang Guangda Niu Wallace C. H. Choy 《Advanced functional materials》2019,29(6)
Organic–inorganic halide hybrid perovskite materials are promising materials for X‐ray and photon detection due to their superior optoelectronic properties. Single‐crystal (SGC) perovskites have increasingly attracted attention due to their substantially low crystal defects, which contribute to improving the figures of merit of the devices. Cuboid CH3NH3PbI3 SGC with the naturally favorable geometry for device fabrication is rarely reported in X‐ray and photon detection application. The concept of seed dissolution‐regrowth to improve crystal quality of cuboid CH3NH3PbI3 SGC is proposed and a fundamental understanding of the nucleation and growth is provided thermodynamically. The X‐ray detector fabricated from cuboid CH3NH3PbI3 SGC demonstrates the firstly reported high sensitivity of 968.9 µC?1 Gy?1 cm?2 under ?1 V bias. The results also show that the favorable crystal orientation and high quality of cuboid CH3NH3PbI3 leads to better responsivity and faster response speed than the more common dodecahedral CH3NH3PbI3 in photodetection. Consequently, the work paves a way to synthesize high‐quality perovskite SGCs and benefits the application of MAPbI3 SGCs with preferred crystal orientation and favorable crystal geometry for emerging device applications. 相似文献
12.
Radial X‐Ray Diffraction Study of Superhard Early Transition Metal Dodecaborides under High Pressure
Jialin Lei Georgiy Akopov Michael T. Yeung Jinyuan Yan Richard B. Kaner Sarah H. Tolbert 《Advanced functional materials》2019,29(22)
The deformation behavior of the three metal dodecaborides (YB12, ZrB12, and Zr0.5Y0.5B12) is investigated using radial X‐ray diffraction under nonhydrostatic compression up to ≈60 GPa with a goal of understanding how bonding and metal composition control hardness. Zr0.5Y0.5B12, which has the highest Vickers hardness (Hv = 45.8 ± 1.3 GPa at 0.49 N load), also shows the highest bulk modulus (K0 = 320 ± 5 GPa). The 0.49 N hardness for ZrB12 and YB12 are both lower and very similar, and both show lower bulk moduli (K0 = 276 ± 7 GPa, and K0 = 238 ± 6 GPa, respectively). Differential stress is then measured to study the strength and strength anisotropy. Zr0.5Y0.5B12 supports the highest differential stress, in agreement with its high hardness, a fact that likely arises from atomic size mismatch between Zr and Y combined with the rigid network of boron cages. The (200) plane for all samples supports the largest differential strain, while the (111) plane supports the smallest, consistent with the theoretically predicted slip system of {111} [ ]. Strain softening is also observed for ZrB12. Finally, the full elastic stiffness tensors for ZrB12 and YB12 are solved. ZrB12 is the most isotropic, but the extent of elastic anisotropy for all dodecaborides studied is relatively low due to the highly symmetric boron cage network. 相似文献
13.
A chemical approach to controlling the work function of few‐layer graphene is investigated. Graphene films are synthesized on Cu foil by chemical vapor deposition. Six metal chlorides, AuCl3, IrCl3, MoCl3, OsCl3, PdCl2, and RhCl3, are used as dopants. The sheet resistance of the doped graphene decreases from 1100 Ω/sq to ≈500–700 Ω/sq and its transmittance at 550 nm also decreases from 96.7% to 93% for 20 mM AuCl3 due to the formation of metal particles. The sheet resistance and transmittance are reduced with increasing metal chloride concentration. The G peak in the Raman spectra is shifted to a higher wavenumber after metal chloride doping, which indicates a charge transfer from graphene to metal ions. The intensity ratio of IC?C/IC?C increases with doping, indicating an electron transfer from graphene sheets to metal ions. Ultraviolet photoemission spectroscopy data shows that the work function of graphene increases from 4.2 eV to 5.0, 4.9, 4.8, 4.68, 5.0, and 5.14 eV for the graphene with 20 mM AuCl3, IrCl3, MoCl3, OsCl3, PdCl2, and RhCl3, respectively. It is considered that spontaneous charge transfer occurs from the specific energy level of graphene to the metal ions, thus increasing the work function. 相似文献
14.
Tailoring the Surface Chemical Reactivity of Transition‐Metal Dichalcogenide PtTe2 Crystals 下载免费PDF全文
Antonio Politano Gennaro Chiarello Chia‐Nung Kuo Chin Shan Lue Raju Edla Piero Torelli Vittorio Pellegrini Danil W. Boukhvalov 《Advanced functional materials》2018,28(15)
PtTe2 is a novel transition‐metal dichalcogenide hosting type‐II Dirac fermions that displays application capabilities in optoelectronics and hydrogen evolution reaction. Here it is shown, by combining surface science experiments and density functional theory, that the pristine surface of PtTe2 is chemically inert toward the most common ambient gases (oxygen and water) and even in air. It is demonstrated that the creation of Te vacancies leads to the appearance of tellurium‐oxide phases upon exposing defected PtTe2 surfaces to oxygen or ambient atmosphere, which is detrimental for the ambient stability of uncapped PtTe2‐based devices. On the contrary, in PtTe2 surfaces modified by the joint presence of Te vacancies and substitutional carbon atoms, the stable adsorption of hydroxyl groups is observed, an essential step for water splitting and the water–gas shift reaction. These results thus pave the way toward the exploitation of this class of Dirac materials in catalysis. 相似文献
15.
A New rGO‐Overcoated Sb2Se3 Nanorods Anode for Na+ Battery: In Situ X‐Ray Diffraction Study on a Live Sodiation/Desodiation Process 下载免费PDF全文
Xing Ou Chenghao Yang Xunhui Xiong Fenghua Zheng Qichang Pan Chao Jin Meilin Liu Kevin Huang 《Advanced functional materials》2017,27(13)
Sodium ion batteries (SIBs) are a promising alternative to lithium ion batteries for a broader range of energy storage applications in the future. However, the development of high‐performance anode materials is a bottleneck of SIBs advancement. In this work, Sb2Se3 nanorods uniformly wrapped by reduced graphene oxide (rGO) as a promising anode material for SIBs are reported. The results show that such Sb2Se3/rGO hybrid anode yields a high reversible mass‐specific energy capacity of 682, 448, and 386 mAh g?1 at a rate of 0.1, 1.0, and 2.0 A g?1, respectively, and sustains at least 500 stable cycles at a rate of 1.0 A g?1 with an average mass‐specific energy capacity of 417 mAh g?1 and capacity retention of 90.2%. In situ X‐ray diffraction study on a live SIB cell reveals that the observed high performance is a result of the combined Na+ intercalation, conversion reaction between Na+ and Se, and alloying reaction between Na+ and Sb. The presence of rGO also plays a key role in achieving high rate capacity and cycle stability by providing good electrical conductivity, tolerant accommodation to volume change, and strong electron interactions to the base Sb2Se3 anode. 相似文献
16.
Alfredo M. Gravagnuolo Eden Morales‐Narváez Charlene Regina Santos Matos Sara Longobardi Paola Giardina Arben Merkoçi 《Advanced functional materials》2015,25(38):6084-6092
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications. 相似文献
17.
Qi Wang Shengjie Ling Xiaoping Liang Huimin Wang Haojie Lu Yingying Zhang 《Advanced functional materials》2019,29(16)
Electronic tattoos (E‐tattoos), which can be intimately mounted on human skin for noninvasive and high‐fidelity sensing, have attracted the attention of researchers in the field of wearable electronics. However, fabricating E‐tattoos that are capable of self‐healing and sensing multistimuli, similar to the inherent attributes of human skin, is still challenging. Herein, a healable and multifunctional E‐tattoo based on a graphene/silk fibroin/Ca2+ (Gr/SF/Ca2+) combination is reported. The highly flexible E‐tattoos are prepared through printing or writing using Gr/SF/Ca2+ suspension. The graphene flakes distributed in the matrix form an electrically conductive path that is responsive to environmental changes, such as strain, humidity, and temperature variations, endowing the E‐tattoo with high sensitivity to multistimuli. The performance of the E‐tattoo is investigated as a strain, humidity, and temperature sensor that shows high sensitivity, a fast response, and long‐term stability. The E‐tattoo is remarkably healed after damage by water because of the reformation of hydrogen and coordination bonds at the fractured interface. The healing efficiency is 100% in only 0.3 s. Finally, as proof of concept, its applications for monitoring of electrocardiograms, breathing, and temperature are shown. Based on its unique properties and superior performance, the Gr/SF/Ca2+ E‐tattoo may be a promising candidate material for epidermal electronics. 相似文献
18.
Martin E. McBriarty Joanne E. Stubbs Peter J. Eng Kevin M. Rosso 《Advanced functional materials》2018,28(8)
The atomic‐scale structure of the interface between a transition metal oxide and aqueous electrolyte regulates the interfacial chemical reactions fundamental to (photo)electrochemical energy conversion and electrode degradation. Measurements that probe oxide–electrolyte interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide–electrolyte interfaces far from equilibrium. Using a novel cell, the structure of the hematite (α‐Fe2O3) ()–electrolyte interface is measured under controlled electrochemical bias using synchrotron crystal truncation rod X‐ray scattering. At increasingly cathodic potentials, charge‐compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable state. Therefore, the flux of current and ions across the interface is regulated by multiple electrolyte layers whose specific structure and polarization change in response to the applied potential. The study reveals the complex environment underlying the simplified electrical double layer models used to interpret electrochemical measurements and emphasizes the importance of condition‐specific structural characterization for properly understanding catalytic processes at functional transition metal oxide–electrolyte interfaces. 相似文献
19.
Tianhang Shi Wenjing Sun Ruixue Qin Dongsheng Li Yushuo Feng Lei Chen Gang Liu Xiaoyuan Chen Hongmin Chen 《Advanced functional materials》2020,30(24)
Persistent luminescence imaging is accompanied by continuous illumination after the removal of excitation light, which can successfully prevent the generation of autofluorescence. In this study, a mesoporous silica template method is used to prepare uniform and monodisperse porous nanophosphors that can generate X‐ray‐excited persistent luminescence (XEPL). By loading photosensitizers, XEPL effectively excites the photosensitizers to produce reactive oxygen species for killing cancer cells. Imaging of orthotopic hepatic tumors in vivo shows that nanophosphors accumulate in the liver tumors through a passive targeting mechanism, as confirmed by the co‐imaging of bioluminescence and X‐ray‐excited luminescence. Under image‐guidance, X‐ray‐induced photodynamic therapy effectively inhibits the growth of orthotopic hepatic tumors with negligible side effects. Overall, X‐ray‐induced persistent luminescence promotes ultrasensitive imaging and effective inhibition of orthotopic hepatic tumors. 相似文献
20.
We compare the organization of the first coordination shells around the calcium ion in biogenic ACC phases from three different sources. The results show that although the three biogenic samples have the same chemical composition, which is referred to collectively under the name “amorphous calcium carbonate”, they are structurally different from one another. These differences may be attributed to the diverse modes of formation of such biogenic materials and may account for their known variations in stability. 相似文献