首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The practical application of graphene has still been hindered by high cost and scarcity in supply. It boosts great interest in seeking for low‐cost substitute of graphene for upcoming usage where extremely physical properties are not absolutely critical. The conversion of renewable biomass offers a great opportunity for sustainable and economic fabrication of 2D carbon nanostructures. However, large‐scale production of carbon nanosheets with ultrahigh aspect ratio, satisfied electronic properties, and the capability of organized assembly like graphene has been rarely reported. In this work, a facile yet efficient approach for mass production of flexible boric/nitrogen co‐doped carbon nanosheets with very thin thickness of 5–8 nm and ultrahigh aspect ratio of over 6000–10 000 is demonstrated by assembling the biomass molecule in long‐range order on 2D hard template and subsequent annealing. The advantage of these doped carbon nanosheets over conventional products lies in that they can be readily assembled to multilevel architectures such as freestanding flexible thin film and ultralight aerogels with better electrical properties, which exhibit exceptional capacitive performance for supercapacitor application. The recyclability of boric acid template further reduces the discharge of the waste and processing cost, rendering high cost‐effectiveness and environmental benignity for scalable production.  相似文献   

3.
Taking advantage of the unique structure and properties of gramineous straw that are available across the world in a yearly scale of several hundred million tons, a strategy to design and fabricate flexible high-performance supercapacitors (SCs) is developed, of which the key components including electrode, separator, and electrolyte are all made from the eulaliopsis binata (EB), a ubiquitous gramineous straw. This kind of all-in-one biomass-based flexible supercapacitors (BFSs) is first proposed, with the cuticle-derived fibers (EBMs) as a separator, the pith-derived carbon sponges (EBCs) as an electrode, and the sodium salts of the extracted carboxymethyl cellulose as gel electrolyte. The EBM with uniform diameter size, developed porosity, and abundant -OH/-COOH groups have good flexibility, wettability, and ionic conductivity, far exceeding those of commercial glass-fiber separators. The EBC has a high level of N/O/S co-doping and hierarchical porous structure, resulting in enhanced ion accessibility and supercapacitance. With these advantages, the as-fabricated BFS has shown ultra-high-rate performance, high energy density, and excellent flexibility, surpassing the biomass-derived flexible supercapacitors reported thus far. This novel approach will shed light on the value-added utilization of biomass from the viewpoint of molecular chemical engineering and product engineering and pave the way for fabricating flexible high-performance SCs and beyond.  相似文献   

4.
Limited by 2D geometric morphology and low bulk packing density, developing graphene‐based flexible/compressible supercapacitors with high specific capacitances (gravimetric/volumetric/areal), especially at high rates, is an outstanding challenge. Here, a strategy for the synthesis of free‐standing graphene ribbon films (GRFs) for high‐performance flexible and compressible supercapacitors through blade‐coating of interconnected graphene oxide ribbons and a subsequent thermal treatment process is reported. With an ultrahigh mass loading of 21 mg cm?2, large ion‐accessible surface area, efficient electron and ion transport pathways as well as high packing density, the compressed multilayer‐folded GRF films (F‐GRF) exhibit ultrahigh areal capacitance of 6.7 F cm?2 at 5 mA cm?2, high gravimetric/volumetric capacitances (318 F g?1, 293 F cm?3), and high rate performance (3.9 F cm?2 at 105 mA cm?2), as well as excellent cycling stability (109% of capacitance retention after 40 000 cycles). Furthermore, the assembled F‐GRF symmetric supercapacitor with compressible and flexible characteristics, can deliver an ultrahigh areal energy density of 0.52 mWh cm?2 in aqueous electrolyte, almost two times higher than the values obtained from symmetric supercapacitors with comparable dimensions.  相似文献   

5.
Highly flexible supercapacitors (SCs) have great potential in modern electronics such as wearable and portable devices. However, ultralow specific capacity and low operating potential window limit their practical applications. Herein, a new strategy for the fabrication of free‐standing Ni?Mo?S and Ni?Fe?S nanosheets (NSs) for high‐performance flexible asymmetric SC (ASC) through hydrothermal and subsequent sulfurization technique is reported. The effect of Ni2+ is optimized to attain hierarchical Ni?Mo?S and Ni?Fe?S NS architectures with high electrical conductivity, large surface area, and exclusive porous networks. Electrochemical properties of Ni?Mo?S and Ni?Fe?S NS electrodes exhibit that both have ultrahigh specific capacities (≈312 and 246 mAh g?1 at 1 mA cm?2), exceptional rate capabilities (78.85% and 78.46% capacity retention even at 50 mA cm?2, respectively), and superior cycling stabilities. Most importantly, a flexible Ni?Mo?S NS//Ni?Fe?S NS ASC delivers a high volumetric capacity of ≈1.9 mAh cm?3, excellent energy density of ≈82.13 Wh kg?1 at 0.561 kW kg?1, exceptional power density (≈13.103 kW kg?1 at 61.51 Wh kg?1) and an outstanding cycling stability, retaining ≈95.86% of initial capacity after 10 000 cycles. This study emphasizes the potential importance of compositional tunability of the NS architecture as a novel strategy for enhancing the charge storage properties of active electrodes.  相似文献   

6.
Inorganic/organic dielectric nanocomposites have been extensively explored for energy storage applications for their ease of processing, flexibility, and low cost. However, achieving simultaneous high energy density and high efficiency under practically workable electric fields has been a long-standing challenge. Guided by first-principles calculations of interface properties and phase-field simulations of the dynamic dielectric breakdown process, superhierarchical nanocomposites of ferroelectric perovskites, layered aluminosilicate nanosheets, and an organic polymer matrix are designed and simultaneous high energy density of 20 J cm−3 and high efficiency of 84% at a low electric field of 510 MV m−1 are achieved. This is the highest energy density of all the state-of-the-art dielectric polymer nanocomposites with energy efficiency > 80% at a low electric field of <600 MV m−1. Strong atomic hybridization, large ionic displacement, the enhanced breakdown strength through forming charge-blocking layers, and the superhierarchical microstructure with gradient interfaces are responsible for the high performances. This superhierarchical structuring modulation strategy is generally applicable to composites for different functionalities and applications.  相似文献   

7.
8.
Silicon‐based materials have shown great potential and been widely studied in various fields. Unlike its unparalleled theoretical capacity as anodes for batteries, few investigations have been reported on silicon‐based materials for applications in supercapacitors. Here, an electrode composed of layered silicon‐based nanosheets, obtained through oxidation and exfoliation, for a supercapacitor operated up to 4 V is reported. These silicon‐based nanosheets show an areal specific capacitance of 4.43 mF cm?2 at 10 mV s?1 while still retaining a specific capacitance of 834 µF cm?2 even at an ultrahigh scan rate of 50 000 mV s?1. The volumetric energy and power density of the supercapacitor are 7.65 mWh cm?3 and 9312 mW cm?3, respectively, and the electrode can operate for 12000 cycles in a potential window of 4 V at 2 A g?1, while retaining 90.6% capacitance. These results indicate that the silicon‐based nanosheets can be a competitive candidate as the supercapacitor electrode material.  相似文献   

9.
2D conjugated metal‐organic frameworks (2D c‐MOFs) are emerging as a novel class of conductive redox‐active materials for electrochemical energy storage. However, developing 2D c‐MOFs as flexible thin‐film electrodes have been largely limited, due to the lack of capability of solution‐processing and integration into nanodevices arising from the rigid powder samples by solvothermal synthesis. Here, the synthesis of phthalocyanine‐based 2D c‐MOF (Ni2[CuPc(NH)8]) nanosheets through ball milling mechanical exfoliation method are reported. The nanosheets feature with average lateral size of ≈160 nm and mean thickness of ≈7 nm (≈10 layers), and exhibit high crystallinity and chemical stability as well as a p‐type semiconducting behavior with mobility of ≈1.5 cm2 V?1 s?1 at room temperature. Benefiting from the ultrathin feature, the nanosheets allow high utilization of active sites and facile solution‐processability. Thus, micro‐supercapacitor (MSC) devices are fabricated mixing Ni2[CuPc(NH)8] nanosheets with exfoliated graphene, which display outstanding cycling stability and a high areal capacitance up to 18.9 mF cm?2; the performance surpasses most of the reported conducting polymers‐based and 2D materials‐based MSCs.  相似文献   

10.
Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost‐effective microwave‐assisted method. In order to achieve high energy and power densities, a high‐voltage asymmetric supercapacitor is successfully fabricated using Ni(OH)2/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high‐voltage region of 0–1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g?1 and high energy density of 77.8 Wh kg?1. Furthermore, the Ni(OH)2/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems.  相似文献   

11.
Commercial aluminium electrolyte capacitors (AECs) are too large for integration in future highly integrated electronic systems. Supercapacitors, in comparison, possess a much higher capacitance per unit volume and can be embedded as passive capacitors to address such challenges in electronics scaling. However, the slow frequency response (<101 Hz) typical of supercapacitors is a major hurdle to their practical application. Here, it is demonstrated that 1T‐phase MoSe2 nanosheets obtained by laser‐induced phase transformation can be used as an electrode material in embedded micro‐supercapacitors. The metallic nature of MoSe2 nanosheet‐based electrodes provides excellent electron‐ and ion‐transport properties, which leads to an unprecedented high‐frequency response (up to 104 Hz) and cycle stability (up to 106 cycles) when integrated in supercapacitors, and their power density can be ten times higher than that of commercial AECs. Furthermore, fabrication processes of the present device are fully compatible with system‐in‐package device manufacturing to meet stringent specifications for the size of embedded components. The present research represents a critical step forward in in‐package and on‐chip applications of electrolytic capacitors.  相似文献   

12.
The introduction of surface functional groups onto graphene can provide additional pseudocapacitance for supercapacitors. However, the compensation for the loss of electrical conductivity arising from the disruption of the conjugated system remains a big challenge. Here, a novel strategy is reported for the design of oxygen clusters distributed in graphene with “paddy land” structure via a low‐temperature annealing process. Moreover, the distribution, content, and variety of oxygen groups and the conductivity of reduced graphene oxide (RGO) can be easily adjusted by annealing temperature and time. First‐principles calculations demonstrate that “paddy land” structure exhibits conjugated carbon network, ultralow HOMO–LUMO gap, and long span of atomic charge values, which are beneficial for the enhanced pseudocapacitance and rate performance. As a result, the functionalized graphene (GO‐160‐8D) exhibits high specific capacitance of 436 F g?1 at 0.5 A g?1, exceeding the values of previously reported RGO materials, as well as excellent rate performance (261 F g?1 at 50 A g?1) and cycling stability (94% of capacitance retention after 10 000 cycles). The findings may open a door for finely controlling the location and density of functionalities on graphene for applications in energy storage and conversion fields via a green and energy‐efficient process.  相似文献   

13.
Asymmetric supercapacitors with high energy density are fabricated using a self‐assembled reduced graphene oxide (RGO)/MnO2 (GrMnO2) composite as a positive electrode and a RGO/MoO3 (GrMoO3) composite as a negative electrode in safe aqueous Na2SO4 electrolyte. The operation voltage is maximized by choosing two metal oxides with the largest work function difference. Because of the synergistic effects of highly conductive graphene and highly pseudocapacitive metal oxides, the hybrid nanostructure electrodes exhibit better charge transport and cycling stability. The operation voltage is expanded to 2.0 V in spite of the use of aqueous electrolyte, revealing a high energy density of 42.6 Wh kg?1 at a power density of 276 W kg?1 and a maximum specific capacitance of 307 F g?1, consequently giving rise to an excellent Ragone plot. In addition, the GrMnO2//GrMoO3 supercapacitor exhibits improved capacitance with cycling up to 1000 cycles, which is explained by the development of micropore structures during the repetition of ion transfer. This strategy for the choice of metal oxides provides a promising route for next‐generation supercapacitors with high energy and high power densities.  相似文献   

14.
15.
Bacterial cellulose (BC) is used as both template and precursor for the synthesis of nitrogen‐doped carbon networks through the carbonization of polyaniline (PANI) coated BC. The as‐obtained carbon networks can act not only as support for obtaining high capacitance electrode materials such as activated carbon (AC) and carbon/MnO2 hybrid material, but also as conductive networks to integrate active electrode materials. As a result, the as‐assembled AC//carbon‐MnO2 asymmetric supercapacitor exhibits a considerably high energy density of 63 Wh kg?1 in 1.0 m Na2SO4 aqueous solution, higher than most reported AC//MnO2 asymmetric supercapacitors. More importantly, this asymmetric supercapacitor also exhibits an excellent cycling performance with 92% specific capacitance retention after 5000 cycles. Those results offer a low‐cost, eco‐friendly design of electrode materials for high‐performance supercapacitors.  相似文献   

16.
Flexible fiber‐based supercapacitor (FSC) with excellent electrochemical performance and high tensile strength and modulus is strongly desired for some special circumstances, such as load‐bearing, abrasion resistant, and anticutting fabrics. Here, a series of ultrahigh‐strength fiber electrodes are prepared for flexible FSCs based on ultrahigh molecular weight polyethylene fibers, on which the polydopamine, Ag, and poly (3,4‐ethylene dioxythiophene): poly(styrenesulfonate) are deposited in sequence. The modified fiber‐based electrode exhibits superhigh strength up to 3.72 GPa, which is the highest among fiber‐based electrodes reported to date. In addition, FSCs fabricated with the optimized fiber electrode shows a specific areal capacity as high as 563 mF cm?2 at 0.17 mA cm?2, which corresponds to a high areal energy density of ≈50.1 µWh cm?2 at a power density of ≈124 µW cm?2. The specific areal capacity only decrease 8% after 1000 times bending test, indicating the outstanding bending performance of this composite fiber electrode. Furthermore, several FSCs can be connected in series or in parallel to get higher working voltage or higher capacity respectively, which demonstrates its potential for broad applications in flexible devices.  相似文献   

17.
A hierarchical structure consisting of Ni–Co hydroxide nanopetals (NCHPs) grown on a thin free‐standing graphene petal foam (GPF) has been designed and fabricated by a two‐step process for pseudocapacitive electrode applications. The mechanical behavior of GPFs has been, for the first time to our knowledge, quantitatively measured from in situ scanning electron microscope characterization of the petal foams during in‐plane compression and bending processes. The Young's modulus of a typical GPF is 3.42 GPa, indicating its outstanding mechanical robustness as a nanotemplate. The GPF/NCHP electrodes exhibit volumetric capacitances as high as 765 F cm?3, equivalent to an areal capacitance of 15.3 F cm?2 and high rate capability. To assess practical functionality, two‐terminal asymmetric solid‐state supercapacitors with 3D GPF/NCHPs as positive electrodes are fabricated and shown to exhibit outstanding energy and power densities, with maximum average energy density of ≈10 mWh cm?3 and maximum power density of ≈3 W cm?3, high rate capability (a capacitance retention of ≈60% at 100 mA cm?2), and excellent long‐term cyclic stability (full capacitance retention over 15 000 cycles).  相似文献   

18.
2D SnS2 nanosheets have been attracting intensive attention as one potential candidate for the modern electronic and/or optoelectronic fields. However, the controllable large‐size growth of ultrathin SnS2 nanosheets still remains a great challenge and the photodetectors based on SnS2 nanosheets suffer from low responsivity, thus hindering their further applications so far. Herein, an improved chemical vapor deposition route is provided to synthesize large‐size SnS2 nanosheets, the side length of which can surpass 150 μm. Then, ultrathin SnS2 nanosheet‐based phototransistors are fabricated, which achieve high photoresponsivities up to 261 A W?1 (with a fast rising time of 20 ms and a falling time of 16 ms) in air and 722 A W?1 in vacuum, respectively. Furthermore, the effects of back‐gate voltage and air adsorbates on the optoelectronic properties of the SnS2 nanosheet have been systematically investigated. In addition, a high‐performance flexible photodetector based on SnS2 nanosheet is also fabricated with a high responsivity of 34.6 A W?1.  相似文献   

19.
A novel method for fabricating micro‐patterned interdigitated electrodes based on reduced graphene oxide (rGO) and carbon nanotube (CNT) composites for ultra‐high power handling micro‐supercapacitor application is reported. The binder‐free microelectrodes were developed by combining electrostatic spray deposition (ESD) and photolithography lift‐off methods. Without typically used thermal or chemical reduction, GO sheets are readily reduced to rGO during the ESD deposition. Electrochemical measurements show that the in‐plane interdigital design of the microelectrodes is effective in increasing accessibility of electrolyte ions in‐between stacked rGO sheets through an electro‐activation process. Addition of CNTs results in reduced restacking of rGO sheets and improved energy and power density. Cyclic voltammetry (CV) measurements show that the specific capacitance of the micro‐supercapacitor based on rGO–CNT composites is 6.1 mF cm?2 at 0.01 V s?1. At a very high scan rate of 50 V s?1, a specific capacitance of 2.8 mF cm?2 (stack capacitance of 3.1 F cm?3) is recorded, which is an unprecedented performance for supercapacitors. The addition of CNT, electrolyte‐accessible and binder‐free microelectrodes, as well as an interdigitated in‐plane design result in a high‐frequency response of the micro‐supercapacitors with resistive‐capacitive time constants as low as 4.8 ms. These characteristics suggest that interdigitated rGO–CNT composite electrodes are promising for on‐chip energy storage application with high power demands.  相似文献   

20.
The utilization of Ni(OH)2 as a pseudocapacitive material for high performance supercapacitors is hindered by its low electrical conductivity and short cycle life. A coaxial ternary hybrid material comprising of amorphous Ni(OH)2 deposited on multiwalled carbon nanotubes wrapped with conductive polymer (poly (3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate)) is demonstrated. A thin layer of disordered amorphous Ni(OH)2 is deposited by an effective “coordinating etching and precipitating” method, resulting in an ultrahigh specific capacitance of 3262 F g?1 at 5 mV s?1 and excellent rate capability (71.9% capacitance retention at 100 mV s?1). More importantly, the polymer layer prevents the degradation of the nanostructure and dis­solution of Ni ion during repeated charge–discharge cycling for 30 000 cycles, a phenomenon which often plagues Ni(OH)2 nanomaterials. Using the ternary Ni(OH)2 hybrid and the reduced graphene oxide/carbon nanotube hybrid as the positive and negative electrodes, respectively, the assembled asymmetric supercapacitors exhibit high energy density of 58.5 W h kg?1 at the power density of 780 W kg?1 as well as long cycle life (86% capacitance retention after 30 000 cycles). The ternary hybrid architecture design for amorphous Ni(OH)2 can be regarded as a general approach to obtain pseudocapacitive materials for supercapacitors with both high energy density, excellent rate capability, and long cycle life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号