首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Organic Electronics》2008,9(3):347-354
We report the effect of thermal annealing and quenching on the film morphology and device performance of polymer light-emitting electrochemical cells (LECs). The polymer films of LECs consist of a luminescent polymer, an ion-conducting polymer, and a lithium salt. The LECs studied have an extremely large planar configuration, which enables time-resolved fluorescence imaging of both doping and emission profiles of the devices. Annealing at temperatures above 350 K leads to the disappearance of many visible “white dots” initially present in the LEC film, and a much smoother surface. Annealed and quenched devices exhibit dramatically improved initial and peak current, peak electroluminescence (EL) intensity, doping propagation speed and response time. In addition, the emission zone of annealed devices is more centered than un-annealed devices. These improvements are attributed to the melting of electrolyte domains in the LEC film, which leads to better film quality and enhanced ion conductivity. Our results demonstrate that the simple annealing/quenching technique can be used to achieve the desired phase morphology in LEC films, which are often severely phase-separated due to incompatibility between the luminescent polymer and the electrolyte polymer.  相似文献   

2.
Exciton quenching in the recombination zone close to electrochemically doped regions would be one of the bottlenecks for improving device efficiencies of solid-state white light-emitting electrochemical cells (LECs). To further enhance device efficiencies of white LECs for practical applications, we adjust the emissive-layer thickness to reduce exciton quenching. In white LECs with properly thickened emissive-layer thickness, the recombination zone can be situated near the center of the emissive layer, rendering mitigated exciton quenching and thus enhanced device efficiencies. High external quantum efficiencies and power efficiencies of optimized devices reach ca. 11% and 20 lm/W, respectively, which are among the highest reported for white LECs. These results confirm that tailoring the thickness of the emissive layer to avoid exciton quenching would be a feasible approach to improve device efficiencies of white LECs.  相似文献   

3.
Previous studies have identified triplet‐triplet annihilation and triplet‐polaron quenching as the exciton density‐dependent mechanisms which give rise to the efficiency roll‐off observed in phosphorescent organic light‐emitting devices (OLEDs). In this work, these quenching processes are independently probed, and the impact of the exciton recombination zone width on the severity of quenching in various OLED architectures is examined directly. It is found that in devices employing a graded‐emissive layer (G‐EML) architecture the efficiency roll‐off is due to both triplet‐triplet annihilation and triplet‐polaron quenching, while in devices which employ a conventional double‐emissive layer (D‐EML) architecture, the roll‐off is dominated by triplet‐triplet annihilation. Overall, the efficiency roll‐off in G‐EML devices is found to be much less severe than in the D‐EML device. This result is well accounted for by the larger exciton recombination zone measured in G‐EML devices, which serves to reduce exciton density‐driven loss pathways at high excitation levels. Indeed, a predictive model of the device efficiency based on the quantitatively measured quenching parameters shows the role a large exciton recombination zone plays in mitigating the roll‐off.  相似文献   

4.
The in situ formation of a light‐emitting p–n or p–i–n junction in light‐emitting electrochemical cells (LECs) necessitates mixed ionic–electronic conductors in the active layer. This unique characteristic requires electronic, luminescent, and ionic ingredients that work synergistically in the LECs. The material requirements that lead to promising electroluminescent properties are discussed and the important components reported so far are surveyed. Particular attention is paid to the working mechanisms behind junction formation and stabilization to create efficient and stable electroluminescence in conjugated‐polymer‐based LECs. Keeping these fundamentals in mind explains how LEC devices have evolved from classic conjugated polymer blends into highly stable crosslinked, hybrid composite, and stretchable device architectures. To conclude, a future development strategy is proposed based on a dual approach: develop new materials specifically for LEC devices and explore novel ways to efficiently process and stabilize the p–i–n junction, which will drive improvements in both LEC external quantum efficiency and operating lifetime toward truly low‐cost solid‐state lighting applications.  相似文献   

5.
Light‐emitting electrochemical cells (LECs) are devices that utilize efficient ion redistribution to produce high‐efficiency electroluminescence in a simple device architecture. Prototypical polymer LECs utilize three components in the active layer: a luminescent conducting polymer, a salt, and an electrolyte. Similarly, many small‐molecule LECs also utilize an electrolyte to disperse salts. In these systems, the electrolyte is incorporated to efficiently conduct ions and to maintain phase compatibility between all components. However, certain LEC approaches and materials systems enable device operation without a dedicated electrolyte. This review describes the general methods and materials used to circumvent the use of a dedicated electrolyte in LECs. The techniques of synthetically coupling electrolytes, incorporating ionic liquids, and introducing inorganic salts are presented in view of research efforts to date. The use of these techniques in emerging classes of light‐emitting electrochemical cells is also discussed. These approaches have yielded some of the most efficient, long‐lasting, and commercially applicable LECs to date.  相似文献   

6.
《Organic Electronics》2014,15(3):711-720
Compared to near-infrared (NIR) organic light-emitting devices, solid-state NIR light-emitting electrochemical cells (LECs) could possess several superior advantages such as simple device structure, low operating voltages and balanced carrier injection. However, intrinsically lower luminescent efficiencies of NIR dyes and self-quenching of excitons in neat-film emissive layers limit device efficiencies of NIR LECs. In this work, we demonstrate a tandem device structure to enhance device efficiencies of phosphorescent sensitized fluorescent NIR LECs. The emissive layers, which are composed of a phosphorescent host and a fluorescent guest to harvest both singlet and triplet excitons of host, are connected vertically via a thin transporting layer, rendering multiplied light outputs. Output electroluminescence (EL) spectra of the tandem NIR LECs are shown to change as the thickness of emissive layer varies due to altered microcavity effect. By fitting the output EL spectra to the simulated model concerning microcavity effect, the stabilized recombination zones of the thicker tandem devices are estimated to be located away from the doped layers. Therefore, exciton quenching near doped layers mitigates and longer device lifetimes can be achieved in the thicker tandem devices. The peak external quantum efficiencies obtained in these tandem NIR LECs were up to 2.75%, which is over tripled enhancement as compare to previously reported NIR LECs based on the same NIR dye. These efficiencies are among the highest reported for NIR LECs and confirm that phosphorescent sensitized fluoresce combined with a tandem device structure would be useful for realizing highly efficient NIR LECs.  相似文献   

7.
Using a planar electrode geometry, the operational mechanism of iridium(III) ionic transition metal complex (iTMC)‐based light‐emitting electrochemical cells (LECs) is studied by a combination of fluorescence microscopy and scanning Kelvin probe microscopy (SKPM). Applying a bias to the LECs leads to the quenching of the photoluminescence (PL) in between the electrodes and to a sharp drop of the electrostatic potential in the middle of the device, far away from the contacts. The results shed light on the operational mechanism of iTMC‐LECs and demonstrate that these devices work essentially the same as LECs based on conjugated polymers do, i.e., according to an electrochemical doping mechanism. Moreover, with proceeding operation time the potential drop shifts towards the cathode coincident with the onset of light emission. During prolonged operation the emission zone and the potential drop both migrate towards the anode. This event is accompanied by a continuous quenching of the PL in two distinct regions separated by the emission line.  相似文献   

8.
Diketopyrrolopyrrole (DPP)‐based polymers have been consistently used for the fabrication of solar cell devices and transistors due to the existence of intermolecular short contacts, resulting in high electron and hole mobilities. However, they also often show limited external quantum efficiencies (EQEs). In this contribution, the authors analyze the limitations on EQE by a combined study of exciton dissociation efficiency, charge separation, and recombination kinetics in thin films and solar devices of a DPP‐based donor polymer, DPPTT‐T (thieno[3,2‐b]thiophene‐diketopyrrolopyrrole copolymer) blended with varying weight fractions of the fullerene acceptor PC70BM. From the correlations between photoluminescence quenching, transient absorption studies, and EQE measurements, it is concluded that the main limitation of photon‐to‐charge conversion in DPPTT‐T/PC70BM devices is poor exciton dissociation. This exciton quenching limit is related not only to the low affinity/miscibility of the materials, as confirmed by wide angle X‐ray diffraction diffraction and transmission electron microscopy data, but also to the relatively short DPPTT‐T singlet exciton lifetime, possibly associated with high nonradiative losses. A further strategy to improve EQE in this class of polymers without sacrificing the good extraction properties in optimized blends is therefore to limit those nonradiative decay processes.  相似文献   

9.
Organic light-emitting devices exhibiting high power conversion efficiency and long operating lifetime may potentially be achieved with the polymer light-emitting electrochemical cell (LEC) configuration. An LEC device typically uses a thin layer of conjugated polymer sandwiched between two contact electrodes. The polymer layer contains an ionically conductive species that are essential in the formation of a light-emitting p-i-n junction. LEC devices are characterized with balanced electron and hole injections, high current density at relatively low bias voltages (2-4 V), and high electroluminescent power efficiency. We will describe the working mechanism of the LECs and review the recent developments in LEC materials, device fabrication and performance. Among the important developments are planar (surface-typed) LECs, bilayer LECs that emit different colors at forward and reverse biases, frozen p-i-n junction LECs that functions like diodes, and phosphorescent LECs. Extensive efforts have been made to improve the LEC performance by controlling the blend morphology, including the use of bipolar surfactant additives and new electrolytes, the synthesis of conjugated polymers with ion-transporting main chain segments or side groups and polyelectrolyte. Degradation mechanisms that limit the lifetime of the LECs will also be discussed  相似文献   

10.
The choice of an adequate electrolyte is a fundamental aspect in polymer light-emitting electrochemical cells (PLECs) as it provides the in situ electrochemical doping and influences the performance of these devices. In this study, a hyperbranched polymer (Hybrane DEO750 8500) blended with a Li salt is used as a novel electrolyte in state-of-the-art Super Yellow (a polyphenylenevinylene) based LECs. Due to the desirable properties of the hyperbranched polymer and the homogeneous and smooth films that it forms with the emitting polymer, PLEC with excellent electroluminescent properties are obtained using a pulsed current bias scheme. The devices are very stable, with lifetimes in excess of 2000 h with initial luminance values above 450 cd m−2, a peak efficiency of 12.6 lm W−1, and sub-minute turn-on times. The stability of the devices is also studied by measuring the photoluminescence (PL) of the semiconductor during electroluminescent operation. The findings suggest that it is possible to observe the quenching of the PL in vertically stacked devices due to the advancement of the doped fronts in the film and an immediate PL recovery when the bias is removed.  相似文献   

11.
We present a quantitative analysis of the loss of electroluminescence in light-emitting diodes (LEDs) based on poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) due to the combination of non-radiative trap-assisted recombination and exciton quenching at the metallic cathode. It is demonstrated that for an MEH-PPV LED the biggest efficiency loss, up to 45%, arises from extrinsic non-radiative recombination via electron traps. The loss caused by exciton quenching at the cathode proves only to be significant for devices thinner than 100 nm. Removal of electron traps by purification is expected to enhance the efficiency of polymer LEDs by more than a factor of two.  相似文献   

12.
We have showed that the doping of an organic salt into a PVK-based polymer emissive layer could enhance the carrier balance greatly to result in higher luminance and luminous efficiency. It is found out that the salt-doped devices show the similar operating characteristics of frozen-junction light-emitting electrochemical cells (LECs). With the salt doping of 0.6 wt.% and an appropriate salt activation process, the fabricated PVK-based polymer light-emitting diodes (PLEDs) shows the luminous efficiency of 15 cd/A at the highest luminance of 55,000 cd/m2 even without an electron-injecting LiF layer. Due to the enhanced carrier balance, the luminous efficiency is found to be maintained from the turn-on voltage to the voltage for the maximum luminance, which means a linear relationship between luminance and current density.  相似文献   

13.
Solid-state light-emitting electrochemical cells (LECs) with promising features of solution processability, low-voltage operation and compatibility with inert cathode metals have shown great potential in display and lighting applications in recent years. Among the reported emissive materials for LECs, ionic transition metal complexes (iTMCs) have relatively higher electroluminescence (EL) efficiencies due to their phosphorescent property. However, the red iTMCs generally exhibit moderate color saturation and low emission efficiency, limiting their display applications. To improve color saturation and device efficiency of red LECs, efficient quantum dots (QDs) with narrow emission bandwidth are good alternative emissive materials. In this work, efficient and saturated red QD LECs employing iTMC carrier injection layers to provide in situ electrochemical doping are demonstrated. The thicknesses of iTMC and red-QD layers are systematically adjusted to achieve the best carrier balance. In the optimized device, the iTMC carrier injection layer facilitates hole injection into the red-QD layer while electrons are injected from the cathode into the red-QD layer directly since the electron injection barrier is low. The Commission Internationale de I'Eclairage (CIE) coordinates of the EL spectra approach the red standard point of National Television System Committee (NTSC). High external quantum efficiency and current efficiency reaching 9.7% and 16.1 cd A−1, respectively. These results confirm superior carrier balance in such a simple iTMC/QD bilayer device structure. Furthermore, compared with iTMC LECs, less degree of device efficiency roll-off upon increasing device current is observed in QD LECs since a shorter excited-state lifetime of fluorescent QDs reduces the probability of collision exciton quenching. Saturated and efficient red EL with mitigated efficiency roll-off from red-QD LECs employing iTMC carrier injection layers confirms that they are good candidates of saturated light sources for displays.  相似文献   

14.
Light‐emitting electrochemical cells (LECs) are one of the most promising technologies for solid‐sate lighting. Among them, LECs based on phosphorescent iridium(III) complexes have attracted significant research interest in the past 15 years, because of their high efficiency and tunable emission color across the entire visible spectrum. To fabricate white LECs for lighting, high‐performance blue LECs are the first prerequisite. Huge efforts have been devoted to improving the performances of blue LECs based on iridium(III) complexes either by developing new blue‐emitting complexes or by engineering the devices. Nevertheless, blue LECs have still shown much lower performances (brightness, efficiency, stability, etc.) compared to the red, orange‐red, yellow, and green counterpart devices. In particular, a single blue LEC with satisfactory blue‐color purity, high efficiency, and high stability is still missing. Here, the advances in blue‐emitting iridium(III) complexes for LECs and the device engineering on LECs using the complexes are reported. The challenges ahead are discussed, and future prospects are outlined.  相似文献   

15.
This article reports the main origin of the low luminescent efficiency in hole‐dominant polymer light‐emitting diodes by controlling the hole injection and by chemically modifying the cathode by molecular monolayers. Since molecular modification of the top electrode is impossible when one deposits the electrode using a vacuum deposition method, this study was performed using a soft contact lamination technique to form electrical contacts on top of the emissive layer. The top electrode was chemically modified with an alkane thiol self‐assembled monolayer (SAM) to act as an interfacial spacer layer between the emitting layer and the cathode. Herein, it is reported that, contrary to common belief, a high device quantum efficiency can be achieved from the dominantly hole‐transporting device with a high work‐function cathode (like Au) by facilitating more hole injection from the anode in the device with low population of exciton quenching channels near the cathode.  相似文献   

16.
Three new heteroleptic iridium complexes that combine two approaches, one leading to a high stability and the other yielding a high luminescence efficiency, are presented. All complexes contain a phenyl group at the 6‐position of the neutral bpy ligand, which holds an additional, increasingly bulky substituent on the 4‐position. The phenyl group allows for intramolecular π–π stacking, which renders the complex more stable and yields long‐living light‐emitting electrochemical cells (LECs). The additional substituent increases the intersite distance between the cations in the film, reducing the quenching of the excitons, and should improve the efficiency of the LECs. Density functional theory calculations indicate that the three complexes have the desired π–π intramolecular interactions between the pendant phenyl ring of the bpy ligand and the phenyl ring of one of the ppy ligands in the ground and the excited states. The photoluminescence quantum efficiency of concentrated films of the complexes improves with the increasing size of the bulky groups indicating that the adopted strategy for improving the efficiency is successful. Indeed, LEC devices employing these complexes as the primary active component show shorter turn‐on times, higher efficiencies and luminances, and, surprisingly, also demonstrate longer device stabilities.  相似文献   

17.
A combination of impedance spectroscopy, device characterization, and modeling is used to pinpoint key processes in the operation of polymer light‐emitting electrochemical cells (LECs). At low applied voltage, electric double layers with a thickness of ≈2–3 nm are shown to exist at the electrode interfaces. At voltages exceeding the bandgap potential of the conjugated polymer (V ≥ 2.5 V for superyellow), a light‐emitting p–n junction forms in situ, with a steady‐state structure that is found to depend strongly on the applied voltage. This is exemplified by that the effective p–n junction thickness (dpn) for a device with an interelectrode gap of 90 nm decreases from ≈23 nm at 2.5 V to ≈6 nm at 3.9 V. The current increases with decreasing dpn in a concerted manner, while the brightness reaches its peak at V = 3.4 V when dpn ≈ 10 nm. The existence of an optimum dpn for high brightness in LECs is attributed to an offset between an increase in the exciton formation rate with decreasing dpn, due to an increasing current, and a simultaneous decrease in the exciton radiative decay rate, when an increasing fraction of excitons diffuses away from the p–n junction into the surrounding non‐radiative doping regions.  相似文献   

18.
Radiative recombination of excitons in δ-doped type-II GaAs/AlAs superlattices (SLs) is studied experimentally. With an increase in the impurity density in δ-layers from 2×1010 to 7.5×1011 cm?2, the integrated intensity of SL photoluminescence (PL) decreases by a factor of 4–6; the intensity of excitonic PL drops considerably (up to 70–80 times), which is accompanied by an increase in the exciton radiative decay rate. Uniform doping of the SL does not result in the exciton PL quenching. Analysis of the temperature dependence and the kinetics of the PL indicate that impurity quenching of the excitonic PL in δ-doped structures is not related to a reduction in the exciton localization energy and cannot be explained by an increase in the density of nonradiative recombination centers. We conclude that the PL quenching is mainly caused by the appearance of built-in electric fields originating from ionized impurities, which hinders the formation of the excitons.  相似文献   

19.
We report efficient and color-stable white light-emitting electrochemical cells (LECs) by combining single-layered blue-emitting LECs with red-emitting color conversion layers (CCLs) on the inverse side of the glass substrate. By judicious choosing of the red-emitting dye doped in CCLs, good spectral overlap between the absorption spectrum of the red-emitting dye and the emission spectrum of the blue-emitting emissive material results in efficient energy transfer and thus sufficient down-converted red emission at low doping concentrations of the red-emitting dye in the CCLs. Low doping concentration is beneficial in reducing self-quenching of the red-emitting dye, rendering efficient red emission. Electroluminescent (EL) measurements show that the peak external quantum efficiency and the peak power efficiency of the white LECs employing red CCLs reach 5.93% and 15.34 lm W−1, respectively, which are among the highest reported for white LECs. Furthermore, these devices exhibit bias-insensitive white EL spectra, which are required for practical applications, due to nondoped emissive layers. These results reveal that single-layered blue-emitting LECs combined with red-emitting CCLs are one of the potential candidates for efficient and color-stable white light-emitting devices.  相似文献   

20.
Using imidazole‐type ancillary ligands, a new class of cationic iridium complexes ( 1 – 6 ) is prepared, and photophysical and electrochemical studies and theoretical calculations are performed. Compared with the widely used bpy (2,2′‐bipyridine)‐type ancillary ligands, imidazole‐type ancillary ligands can be prepared and modified with ease, and are capable of blueshifting the emission spectra of cationic iridium complexes. By tuning the conjugation length of the ancillary ligands, blue‐green to red emitting cationic iridium complexes are obtained. Single‐layer light‐emitting electrochemical cells (LECs) based on cationic iridium complexes show blue‐green to red electroluminescence. High efficiencies of 8.4, 18.6, and 13.2 cd A?1 are achieved for the blue‐green‐emitting, yellow‐emitting, and orange‐emitting devices, respectively. By doping the red‐emitting complex into the blue‐green LEC, white LECs are realized, which give warm‐white light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.42, 0.44) and color‐rendering indexes (CRI) of up to 81. The peak external quantum efficiency, current efficiency, and power efficiency of the white LECs reach 5.2%, 11.2 cd A?1, and 10 lm W?1, respectively, which are the highest for white LECs reported so far, and indicate the great potential for the use of these cationic iridium complexes in white LECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号