首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The host materials designed for highly efficient white phosphorescent organic light‐emitting diodes (PhOLEDs) with power efficiency (PE) >50 lm W‐1 and low efficiency roll‐off are very rare. In this work, three new indolocarbazole‐based materials (ICDP, 4ICPPy, and 4ICDPy) are presented composed of 6,7‐dimethylindolo[3,2‐a]carbazole and phenyl or 4‐pyridyl group for hosting blue, green, and red phosphors. Among this three host materials, 4ICDPy‐based devices reveal the best electroluminescent performance with maximum external quantum efficiencies (EQEs) of 22.1%, 27.0%, and 25.3% for blue (FIrpic), green (fac‐Ir(ppy)3), and red ((piq)2Ir(acac)) PhOLEDs. A two‐color and single‐emitting‐layer white organic light‐emitting diode hosted by 4ICDPy with FIrpic and Ir(pq)3 as dopants achieves high EQE of 20.3% and PE of 50.9 lm W?1 with good color stability; this performance is among the best for a single‐emitting‐layer white PhOLEDs. All 4ICDPy‐based devices show low efficiency roll‐off probably due to the excellent balanced carrier transport arisen from the bipolar character of 4ICDPy.  相似文献   

2.
By attaching a bulky, inductively electron‐withdrawing trifluoromethyl (CF3) group on the pyridyl ring of the rigid 2‐[3‐ (N‐phenylcarbazolyl)]pyridine cyclometalated ligand, we successfully synthesized a new heteroleptic orange‐emitting phosphorescent iridium(III) complex [Ir( L 1 )2(acac)] 1 ( HL 1 = 5‐trifluoromethyl‐2‐[3‐(N‐phenylcarbazolyl)]pyridine, Hacac = acetylacetone) in good yield. The structural and electronic properties of 1 were examined by X‐ray crystallography and time‐dependent DFT calculations. The influence of CF3 substituents on the optical, electrochemical and electroluminescence (EL) properties of 1 were studied. We note that incorporation of the carbazolyl unit facilitates the hole‐transporting ability of the complex, and more importantly, attachment of CF3 group provides an access to a highly efficient electrophosphor for the fabrication of orange phosphorescent organic light‐emitting diodes (OLEDs) with outstanding device performance. These orange OLEDs can produce a maximum current efficiency of ~40 cd A?1, corresponding to an external quantum efficiency of ~12% ph/el (photons per electron) and a power efficiency of ~24 lm W?1. Remarkably, high‐performance simple two‐element white OLEDs (WOLEDs) with excellent color stability can be fabricated using an orange triplet‐harvesting emitter 1 in conjunction with a blue singlet‐harvesting emitter. By using such a new system where the host singlet is resonant with the blue fluorophore singlet state and the host triplet is resonant with the orange phosphor triplet level, this white light‐emitting structure can achieve peak EL efficiencies of 26.6 cd A?1 and 13.5 lm W?1 that are generally superior to other two‐element all‐fluorophore or all‐phosphor OLED counterparts in terms of both color stability and emission efficiency.  相似文献   

3.
A series of compounds containing arylamine and 1,2‐diphenyl‐1H‐benz[d]imidazole moieties are developed as ambipolar, blue‐emitting materials with tunable blue‐emitting wavelengths, tunable ambipolar carrier‐transport properties and tunable triplet energy gaps. These compounds possess several novel properties: (1) they emit in the blue region with high quantum yields; (2) they have high morphological stability and thermal stability; (3) they are capable of ambipolar carrier transport; (4) they possess tunable triplet energy gaps, suitable as hosts for yellow‐orange to green phosphors. The electron and hole mobilities of these compounds lie in the range of 0.68–144 × 10?6 and 0.34–147 × 10?6 cm2 V?1 s?1, respectively. High‐performance, single‐layer, blue‐emitting, fluorescent organic light‐emitting diodes (OLEDs) are achieved with these ambipolar materials. High‐performance, single‐layer, phosphorescent OLEDs with yellow‐orange to green emission are also been demonstrated using these ambipolar materials, which have different triplet energy gaps as the host for yellow‐orange‐emitting to green‐emitting iridium complexes. When these ambipolar, blue‐emitting materials are lightly doped with a yellow‐orange‐emitting iridium complex, white organic light‐emitting diodes (WOLEDs) can be achieved, as well by the use of the incomplete energy transfer between the host and the dopant.  相似文献   

4.
A one‐pot synthesis of large size and high quality AuAg alloy nanoparticles (NPs) with well controlled compositions via hot organic media is demonstrated. Amid the synthesis, complexation between trioctylphosphine (TOP) and metal precursors is found, which slows down the rate of nucleation and leads to the growth of large‐size AuAg nanoalloys. The wavelength and relative intensities of the resulting plasmon bands are readily fine‐tuned during the synthetic process using different Au/Ag precursors molar ratios. In the polymer solar cells, a key step in achieving high efficiency is the utilization of 1% Au11Ag89 alloy NPs embedded in the active layer to promote the power conversion efficiency (PCE) up to 4.73%, which outperforms the reference device based on the control standard device of poly(3‐hexylthiophene) (P3HT):phenyl‐C61‐butyric acid methyl ester (PC61BM) under identical conditions. Corresponding increases in short‐circuit current density (Jsc), open‐circuit voltage (Voc), fill factor (FF), and incident photon‐to‐current efficiency (IPCE) enable 31% PCE improvement due to the enhancement of the light‐trapping and the improvement of charge transport in the active layer. The findings advance the fundamental understanding and point to the superiority of Au11Ag89 nanoalloys as a promising metallic additive over Au, Ag, and Au28Ag72 alloy NPs to boost the solar cell performance.  相似文献   

5.
A new series of highly efficient red‐emitting phosphorescent Ir(III) complexes, (Et‐CVz‐PhQ)2Ir(pic‐N‐O), (Et‐CVz‐PhQ)2Ir(pic), (Et‐CVz‐PhQ)2Ir(acac), (EO‐CVz‐PhQ)2Ir(pic‐N‐O), (EO‐CVz‐PhQ)2Ir(pic), and (EO‐CVz‐PhQ)2Ir(acac), based on carbazole (CVz)‐phenylquinoline (PhQ) main ligands and picolinic acid N‐oxide (pic‐N‐O), picolinic acid (pic), and acetylacetone (acac) ancillary ligands, are synthesized for phosphorescent organic light‐emitting diodes (PhOLEDs), and their photophysical, electrochemical, and electroluminescent (EL) properties are investigated. All of the Ir(III) complexes have high thermal stability and emit an intense red light with an excellent color purity at CIE coordinates of (0.65,0.34). Remarkably, high‐performance solution‐processable PhOLEDs were fabricated using Ir(III) complexes with a pic‐N‐O ancillary ligand with a maximum external quantum efficiency (5.53%) and luminance efficiency (8.89 cd A?1). The novel use of pic‐N‐O ancillary ligand in the synthesis of phosphorescent materials is reported. The performance of PhOLEDs using these Ir(III) complexes correlates well with the results of density functional theory calculations.  相似文献   

6.
High‐performance, blue, phosphorescent organic light‐emitting diodes (PhOLEDs) are achieved by orthogonal solution‐processing of small‐molecule electron‐transport material doped with an alkali metal salt, including cesium carbonate (Cs2CO3) or lithium carbonate (Li2CO3). Blue PhOLEDs with solution‐processed 4,7‐diphenyl‐1,10‐phenanthroline (BPhen) electron‐transport layer (ETL) doped with Cs2CO3 show a luminous efficiency (LE) of 35.1 cd A?1 with an external quantum efficiency (EQE) of 17.9%, which are two‐fold higher efficiency than a BPhen ETL without a dopant. These solution‐processed blue PhOLEDs are much superior compared to devices with vacuum‐deposited BPhen ETL/alkali metal salt cathode interfacial layer. Blue PhOLEDs with solution‐processed 1,3,5‐tris(m‐pyrid‐3‐yl‐phenyl)benzene (TmPyPB) ETL doped with Cs2CO3 have a luminous efficiency of 37.7 cd A?1 with an EQE of 19.0%, which is the best performance observed to date in all‐solution‐processed blue PhOLEDs. The results show that a small‐molecule ETL doped with alkali metal salt can be realized by solution‐processing to enhance overall device performance. The solution‐processed metal salt‐doped ETLs exhibit a unique rough surface morphology that facilitates enhanced charge‐injection and transport in the devices. These results demonstrate that orthogonal solution‐processing of metal salt‐doped electron‐transport materials is a promising strategy for applications in various solution‐processed multilayered organic electronic devices.  相似文献   

7.
Materials commonly used in the carrier transport layers of organic light‐emitting diodes, where transport occurs through the bulk, are in general very different from materials used in organic field‐effect transistors, where transport takes place in a very thin accumulation channel. In this paper, the use of a high‐performance electron‐conducting field‐effect transistor material, diperfluorohexyl‐substituted quaterthiophene (DFH‐4T), as the electron‐transporting material in an organic light‐emitting diode structure is investigated. The organic light‐emitting diode has an electron accumulation layer in DFH‐4T at the organic hetero‐interface with the host of the light‐emitting layer, tris(8‐hydroxyquinoline) aluminum (Alq3). This electron accumulation layer is used to transport electrons and inject them into the active emissive host‐guest layer. By optimizing the growth conditions of DFH‐4T for electron transport at the organic hetero‐interface, high electron current densities of 750 A cm?2 are achieved in this innovative light‐emitting structure.  相似文献   

8.
A new series of symmetric and unsymmetric Pt(II) bis(acetylide) complexes of the type D? C≡C? Pt(PBu3)2? C≡C? D (D? Pt? D), A? C≡C? Pt(PBu3)2? C≡C? A (A? Pt? A) and D? C≡C? Pt(PBu3)2? C≡C? A (D? Pt? A) (D, donor groups; A, acceptor groups) are synthesized, and show superior optical power limiting (OPL)/optical transparency trade‐offs. By tailoring the electronic properties of the aryleneethynylene group, distinct electronic structures for these metalated complexes can be obtained, which significantly affect their photophysical behavior and OPL properties for a nanosecond laser pulse at 532 nm. Electronic influence of the ligand type and the molecular symmetry of metal group on the optical transparency/nonlinearity optimization is thoroughly elucidated. Generally, aryleneethynylene ligands with π electron‐accepting nature will effectively enhance the harvesting efficiency of the triplet excited states. The ligand variation to the OPL strength of these Pt(II) compounds follows the order: D? Pt? D > D? Pt? A > A? Pt? A. These results could be attributed to the distinctive excited state character induced by their different electronic structures, on the basis of the data from both photophysical studies and theoretical calculations. All of the complexes show very good optical transparencies in the visible‐light region and exhibit excellent OPL responses with very impressive figure of merit σex/σo values (up to 17), which remarkably outweigh those of state‐of‐the‐art reverse saturable absorption dyes such as C60 and metallophthalocyanines with very poor transparencies. Their lower optical‐limiting thresholds (0.05 J cm?2 at 92% linear transmittance) compared with that of the best materials (ca. 0.07 J cm?2 for InPc and PbPc dyes) currently in use will render these highly transparent materials promising candidates for practical OPL devices for the protection of human eyes and other delicate electro‐optic sensors.  相似文献   

9.
A novel host material containing silicon‐cored spirobifluorene derivative (SBP‐TS‐PSB), is designed, synthesized, and characterized for red phosphorescent organic light‐emitting diodes (OLEDs). The SBP‐TS‐PSB has excellent thermal and morphological stabilities and exhibits high electroluminescence (EL) efficiency as a host for the red phosphorescent OLEDs. The electrophosphorescence properties of the devices using SBP‐TS‐PSB as the host and red phosphorescent iridium (III) complexes as the emitter are investigated and these devices exhibit higher EL performances compared with the reference devices with 4,4′‐N,N′‐dicarbazole‐biphenyl (CBP) as a host material; for example, a (piq)2Ir(acac)‐doped SBP‐TS‐PSB device shows maximum external quantum efficiency of ηext = 14.6%, power efficiency of 10.3 lm W?1 and Commission International de L'Eclairage color coordinates (0.68, 0.32) at J = 1.5 mA cm?2, while the device with the CBP host shows maximum ηext = 12.1%. These high performances can be mainly explained by efficient triplet energy transfer from the host to the guests and improved charge balance attributable to the bipolar characteristics of the spirobifluorene group.  相似文献   

10.
High performance solution‐processed fluorescent and phosphorescent organic light emitting diodes (OLEDs) are achieved by water solution processing of lacunary polyoxometalates used as novel electron injection/transport materials with excellent electron mobilities and hole blocking capabilities. Green fluorescent OLEDs using poly[(9,9‐dioctylfluorenyl‐2,7‐diyl)‐co‐(1,4‐benzo‐{2,1′,3}‐thiadiazole)] (F8BT) as the emissive layer and our polyoxometalates as electron transport/hole blocking layers give a luminous efficiency up to 6.7 lm W?1 and a current efficiency up to 14.0 cd A?1 which remained nearly stable for about 500 h of operation. In addition, blue phosphorescent OLEDs (PHOLEDs) using poly(9‐vinylcarbazole) (PVK):1,3‐bis[2‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazo‐5‐yl]benzene (OXD‐7) as a host and 10.0 wt% FIrpic as the blue dopant in the emissive layer and a polyoxometalate as electron transport material give 12.5 lm W?1 and 30.0 cd A?1 power and luminous efficiency, respectively, which are among the best performance values observed to date for all‐solution processed blue PHOLEDs. The lacunary polyoxometalates exhibit unique properties such as low electron affinity and high ionization energy (of about 3.0 and 7.5 eV, respectively) which render them as efficient electron injection/hole blocking layers and, most importantly, exceptionally high electron mobility of up to 10?2 cm2 V?1 s?1.  相似文献   

11.
Negatively charged gold nanoparticles (AuNPs) and a polyelectrolyte (PE) have been assembled alternately on a polystyrene (PS) colloid by a layer‐by‐layer (LBL) self‐assembly technique to form three‐dimensional (Au/PAH)4/(PSS/PAH)4 multilayer‐coated PS spheres (Au/PE/PS multilayer spheres). The Au/PE/PS multilayer spheres have been used to modify a boron‐doped diamond (BDD) electrode. Cyclic voltammetry is utilized to investigate the properties of the modified electrode in a 1.0 M KCl solution that contains 5.0 × 10?3 M K3Fe(CN)6, and the result shows a dramatically decreased redox activity compared with the bare BDD electrode. The electrochemical behaviors of dopamine (DA) and ascorbic acid (AA) on the bare and modified BDD electrode are studied. The cyclic voltammetric studies indicate that the negatively charged, three‐dimensional Au/PE/PS multilayer sphere‐modified electrodes show high electrocatalytic activity and promote the oxidation of DA, whereas they inhibit the electrochemical reaction of AA, and can effectively be used to determine DA in the presence of AA with good selectivity. The detection limit of DA is 0.8 × 10?6 M in a linear range from 5 × 10?6 to 100 × 10?6 M in the presence of 1 × 10?3 M AA.  相似文献   

12.
Two new solution‐processable wide bandgap materials, bis(4‐((4‐(9‐H‐carbazol‐9‐yl)phenyl)diphenylsilyl)phenyl)(phenyl)phosphine oxide (CS2PO) and bis(4‐((4‐(9‐H‐(3,9′‐bicarbazol)‐9‐yl)phenyl)diphenylsilyl)phenyl)(phenyl)phosphine oxide (DCS2PO), have been developed for blue phosphorescent light‐emitting diodes by coupling an electron‐donating carbazole moiety and an electron‐accepting PO unit together via double‐silicon bridges. Both of them have been characterized as having high glass transition temperatures of 159–199 °C, good solubility in common organic solvent (20 mg mL?1), wide optical gap (3.37–3.55 eV) and high triplet energy levels (2.97–3.04 eV). As compared with their corresponding single‐silicon bridged compounds, this design strategy of extending molecular structure endows CS2PO and DCS2PO with higher thermal stability, better solution processability and more stable film morphology without lowering their triplet energies. As a result, DCS2PO/FIrpic doped blue phosphorescent device fabricated by spin‐coating method shows the best electroluminescent performance with a maximum current efficiency of 26.5 cd A?1, a maximum power efficiency of 8.66 lm W?1, and a maximum external quantum efficiency of 13.6%, which is one of the highest efficiencies among small molecular devices with the same deposition process and device configuration.  相似文献   

13.
A novel yellowish‐green triplet emitter, bis(5‐(trifluoromethyl)‐2‐p‐tolylpyridine) (acetylacetonate)iridium(III) (1), was conveniently synthesized and used in the fabrication of both monochromatic and white organic light‐emitting diodes (WOLEDs). At the optimal doping concentration, monochromatic devices based on 1 exhibit a high efficiency of 63 cd A?1 (16.3% and 36.6 lm W?1) at a luminance of 100 cd m?2. By combining 1 with a phosphorescent sky‐blue emitter, bis(3,5‐difluoro‐2‐(2‐pyridyl)phenyl)‐(2‐carboxypyridyl)iridium(III) (FIrPic), and a red emitter, bis(2‐benzo[b]thiophen‐2‐yl‐pyridine)(acetylacetonate)iridium(III) (Ir(btp)2(acac)), the resulting electrophosphorescent WOLEDs show three evenly separated main peaks and give a high efficiency of 34.2 cd A?1 (13.2% and 18.5 lm W?1) at a luminance of 100 cd m?2. When 1 is mixed with a deep‐blue fluorescent emitter, 4,4′‐bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl (BCzVBi), and Ir(btp)2(acac), the resulting hybrid WOLEDs demonstrate a high color‐rendering index of 91.2 and CIE coordinates of (0.32, 0.34). The efficient and highly color‐pure WOLEDs based on 1 with evenly separated red, green, blue peaks and a high color‐rendering index outperform those of the state‐of‐the‐art emitter, fac‐tris(2‐phenylpyridine)iridium(III) (Ir(ppy)3), and are ideal candidates for display and lighting applications.  相似文献   

14.
Anisotropic Ag2S‐edged Au‐triangular nanoprisms (TNPs) are constructed by controlling preferential overgrowth of Ag2S as plasmonic photocatalysts for hydrogen generation. Under visible and near‐infrared light irradiation, Ag2S‐edged Au‐TNPs exhibit almost fourfold higher efficiency (796 µmol h−1 g−1) than those of Ag2S‐covered Au‐TNPs (216 µmol h−1 g−1) and pure Au‐TNPs in hydrogen generation. A single‐particle photoluminescence study demonstrates that the plasmon‐induced hot electrons transfer from Au‐TNPs to Ag2S for hydrogen generation. Finite‐difference‐time‐domain simulations verify that the corners/edges of Au‐TNPs are high‐curvature sites with maximum electric field distributions facilitating hot electron generation and transfer. Therefore, Ag2S‐edged Au‐TNPs are efficient plasmonic photocatalyst with the desired configurations for charge separation boosting hydrogen generation.  相似文献   

15.
Two new phosphorescent iridium(III ) cyclometalated complexes, [Ir(DPA‐Flpy)3] ( 1 ) and [Ir(DPA‐Flpy)2(acac)] ( 2 ) ((DPA‐Flpy)H = (9,9‐diethyl‐7‐pyridinylfluoren‐2‐yl)diphenylamine, Hacac = acetylacetone), have been synthesized and characterized. The incorporation of electron‐donating diphenylamino groups to the fluorene skeleton is found to increase the highest occupied molecular orbital (HOMO) levels and add hole‐transporting ability to the phosphorescent center. Both complexes are highly amorphous and morphologically stable solids and undergo glass transitions at 160 and 153 °C, respectively. These iridium phosphors emit bright yellow to orange light at room temperature with relatively short lifetimes (< 1 μs) in both solution and the solid state. Organic light‐emitting diodes (OLEDs) fabricated using 1 and 2 as phosphorescent dopant emitters constructed with a multilayer configuration show very high efficiencies. The homoleptic iridium complex 1 is shown to be a more efficient electrophosphor than the heteroleptic congener 2 . Efficient electrophosphorescence with a maximum external quantum efficiency close to 10 % ph/el (photons per electron), corresponding to a luminance efficiency of ~ 30 cd A–1 and a power efficiency of ~ 21 lm W–1, is obtained by using 5 wt.‐% 1 as the guest dopant.  相似文献   

16.
The study reports the development of a solution‐processed phosphorescent tandem organic light‐emitting device (OLED) exhibiting extremely small efficiency roll‐off. The OLED comprises two light‐emitting units (LEUs) connected by an interconnecting unit and employs a thermally activated delayed fluorescence host material. One of the most difficult tasks in the fabrication of OLEDs is to form a multilayer structure without dissolving the underlayer during the coating of the upper layer. The developed host materials exhibit high tolerance to methanol. The upper‐layer adjacent to the light‐emitting layer consists of ZnO nanoparticles, which could be dispersed in methanol by improving the preparation method. This results in the successful fabrication of a solution‐processed phosphorescent tandem OLED comprising two LEUs. The maximum external quantum efficiency (EQE) of the tandem device is 22.8%, and the EQE is 21.9% even at a high luminance of 10 000 cd m?2. The suppression of efficiency roll‐off is among the best of those previously reported. Moreover, the operational stability of the tandem device is much higher compared with single‐LEU devices.  相似文献   

17.
Semi‐ionically fluorinated graphene (s‐FG) is synthesized with a one step liquid fluorination treatment. The s‐FG consists of two different types of bonds, namely a covalent C‐F bond and an ionic C‐F bond. Control is achieved over the properties of s‐FG by selectively eliminating ionic C‐F bonds from the as prepared s‐FG film which is highly insulating (current < 10?13 A at 1 V). After selective elimination of ionic C‐F bonds by acetone treatment, s‐FG recovers the highly conductive property of graphene. A 109 times increase in current from 10?13 to 10?4A at 1 V is achieved, which indicates that s‐FG recovers its conducting property. The properties of reduced s‐FG vary according to the number of layers and the single layer reduced s‐FG has mobility of more than 6000 cm2 V?1 s?1. The mobility drastically decreases with increasing number of layers. The bi‐layered s‐FG has a mobility of 141cm2 V?1 s?1 and multi‐layered s‐FG film showed highly p‐type doped electrical property without Dirac point. The reduction via acetone proceeds as 2C2F(semi‐ionic) + CH3C(O)CH3(l) → HF + 2C(s) + C2F(covalent) + CH3C(O)CH2(l). The fluorination and reduction processes permit the safe and facile non‐destructive property control of the s‐FG film.  相似文献   

18.
A novel thermally activated delayed fluorescence (TADF) molecule, PHCz2BP, is synthesized and used to construct high performance organic light‐emitting diodes (OLEDs) in this work. PHCz2BP is not only the neat emitting layer for efficient sky‐blue OLED, with very high peak external quantum efficiency/power efficiency (EQE/PE) values of 4.0%/6.9 lm W?1, but also acts as a host to sensitize high‐luminance and high‐efficiency green, orange, and red electrophosphorescence with the universal high EQEs of >20%. More importantly, two hybrid white OLEDs based on the double‐layer emitting system of PHCz2BP:green phosphor/PHCz2BP:red phosphor are achieved. To the best of the knowledge, this is the first report for three‐color (blue–green–red) white devices that adopt a TADF blue host emitter and two phosphorescent dopants without any other additional host. Such simple emitting systems thus realized the best electroluminescent performance to date for the WOLEDs utilizing the hybrid TADF/phosphor strategy: forward‐viewing EQEs of 25.1/23.6% and PEs of 24.1/22.5 lm W?1 at the luminance of 1000 cd m?2 with the color rendering indexes of 85/87 and warm‐white Commission Internationale de L'Eclairage coordinates of (0.41, 0.46)/(0.42, 0.45), indicating its potential to be used as practical eye‐friendly solid‐state lighting in future.  相似文献   

19.
Blue fluorescent materials based on silicone end‐capped 2‐diphenylaminofluorene derivatives are synthesized and characterized. These materials are doped into a 2‐methyl‐9,10‐di‐[2‐naphthyl]anthracene host as blue dopant materials in the emitting layer of organic light‐emitting diode devices bearing a structure of ITO/DNTPD (60 nm)/NPB (30 nm)/emitting layer (30 nm)/Alq3 (20 nm)/LiF (1.0 nm)/Al (200 nm). All devices exhibit highly efficient blue electroluminescence with high external quantum efficiencies (3.47%–7.34% at 20 mA cm?2). The best luminous efficiency of 11.2 cd A?1 and highest quantum efficiency of 7.34% at 20 mA cm?2 are obtained in a device with CIE coordinates (0.15, 0.25). A deep‐blue OLED with CIE coordinates (0.15, 0.14) exhibits a luminous efficiency of 3.70 cd A?1 and quantum efficiency of 3.47% at 20 mA cm?2.  相似文献   

20.
Cesium azide (CsN3) is employed as a novel n‐dopant because of its air stability and low deposition temperature. CsN3 is easily co‐deposited with the electron transporting materials in an organic molecular beam deposition chamber so that it works well as an n‐dopant in the electron transport layer because its evaporation temperature is similar to that of common organic materials. The driving voltage of the p‐i‐n device with the CsN3‐doped n‐type layer and a MoO3‐doped p‐type layer is greatly reduced, and this device exhibits a very high power efficiency (57 lm W?1). Additionally, an n‐doping mechanism study reveals that CsN3 was decomposed into Cs and N2 during the evaporation. The charge injection mechanism was investigated using transient electroluminescence and capacitance–voltage measurements. A very highly efficient tandem organic light‐emitting diodes (OLED; 84 cd A?1) is also created using an n–p junction that is composed of the CsN3‐doped n‐type organic layer/MoO3 p‐type inorganic layer as the interconnecting unit. This work demonstrates that an air‐stable and low‐temperature‐evaporable inorganic n‐dopant can very effectively enhance the device performance in p‐i‐n and tandem OLEDs, as well as simplify the material handling for the vacuum deposition process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号