首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents a critical discussion of the various physical processes occurring in organic bulk heterojunction (BHJ) solar cells based on recent experimental results. The investigations span from photoexcitation to charge separation, recombination, and sweep‐out to the electrodes. Exciton formation and relaxation in poly[N‐9″‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PCDTBT) and poly‐3(hexylthiophene) (P3HT) are discussed based on a fluorescence up‐conversion study. The commonly accepted paradigm describing the conversion of incident photons into charge carriers in the BHJ material is re‐examined in light of these femtosecond time‐resolved measurements. Transient photoconductivity, time‐delayed collection field, and time‐delayed dual pulse experiments carried out on BHJ solar cells demonstrate the competition between carrier sweep‐out by the internal field and the loss of photogenerated carriers by recombination. Finally, an emerging hypothesis is discussed: that bimolecular recombination accounts for the majority of recombination from short circuit to open circuit in optimized solar cells, and that bimolecular recombination is bias‐ and charge‐density‐dependent. The study of recombination loss processes in organic solar cells leads to insights into what must be accomplished to achieve the “ideal” solar cell.  相似文献   

2.
Charge transport and nongeminate recombination are investigated in two solution‐processed small molecule bulk heterojunction solar cells consisting of diketopyrrolopyrrole (DPP)‐based donor molecules, mono‐DPP and bis‐DPP, blended with [6,6]‐phenyl‐C71‐butyric acid methyl ester (PCBM). While the bis‐DPP system exhibits a high fill factor (62%) the mono‐DPP system suffers from pronounced voltage dependent losses, which limit both the fill factor (46%) and short circuit current. A method to determine the average charge carrier density, recombination current, and effective carrier lifetime in operating solar cells as a function of applied bias is demonstrated. These results and light intensity measurements of the current‐voltage characteristics indicate that the mono‐DPP system is severely limited by nongeminate recombination losses. Further analysis reveals that the most significant factor leading to the difference in fill factor is the comparatively poor hole transport properties in the mono‐DPP system (2 × 10?5 cm2 V?1 s?1 versus 34 × 10?5 cm2 V?1 s?1). These results suggest that future design of donor molecules for organic photovoltaics should aim to increase charge carrier mobility thereby enabling faster sweep out of charge carriers before they are lost to nongeminate recombination.  相似文献   

3.
Apparent recombination orders exceeding the value of two expected for bimolecular recombination have been reported for organic solar cells in various publications. Two prominent explanations are bimolecular losses with a carrier concentration dependent prefactor due to a trapping limited mobility and protection of trapped charge carriers from recombination by a donor–acceptor phase separation until re‐emission from these deep states. In order to clarify which mechanism is dominant temperature‐ and illumination‐dependent charge extraction measurements are performed under open circuit and short circuit conditions at poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenyl‐C61 butyric acid methyl ester (P3HT:PC61BM) and PTB7:PC71BM (poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl]]) solar cells in combination with current–voltage characteristics. It is shown that the charge carrier density n dependence of the mobility μ and the recombination prefactor are different for P3HT:PC61BM at temperatures below 300 K and PTB7:PC71BM at room temperature. Therefore, in addition to μ(n), a detrapping limited recombination in systems with at least partial donor–acceptor phase separation is required to explain the high recombination orders.  相似文献   

4.
The versatility of a fluoro‐containing low band‐gap polymer, poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b’]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT) in organic photovoltaics (OPVs) applications is demonstrated. High boiling point 1,3,5‐trichlorobenzene (TCB) is used as a solvent to manipulate PCPDTFBT:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) active layer morphology to obtain high‐performance single‐junction devices. It promotes the crystallization of PCPDTFBT polymer, thus improving the charge‐transport properties of the active layer. By combining the morphological manipulation with interfacial optimization and device engineering, the single‐junction device exhibits both good air stability and high power‐conversion efficiency (PCE, of 6.6%). This represents one of the highest PCE values for cyclopenta[2,1‐b;3,4‐b’]dithiophene (CPDT)‐based OPVs. This polymer is also utilized for constructing semitransparent solar cells and double‐junction tandem solar cells to demonstrate high PCEs of 5.0% and 8.2%, respectively.  相似文献   

5.
The development of semitransparent organic solar cells (ST‐OSCs) represents a significant step toward the commercialization of OSCs. However, the trade‐off between power conversion efficiency (PCE) and average visible transmittance (AVT) restricts further improvements of ST‐OSCs. Herein, it is demonstrated that a fibril network strategy can enable ST‐OSCs with a high PCE and AVT simultaneously. A wide‐bandgap polymer PBT1‐C‐2Cl that can self‐assemble into a fibril nanostructure is used as the donor and a near‐infrared small molecule Y6 is adopted as the acceptor. It is found that a tiny amount of PBT1‐C‐2Cl in the blend can form a high speed pathway for hole transport due to the well distributed fibril nanostructure, which increases the transmittance in the visible region. Meanwhile, the acceptor Y6 guarantees sufficient light absorption. Using this strategy, the optimized ST‐OSCs yield a high PCE of 9.1% with an AVT of over 40% and significant light utilization efficiency of 3.65% at donor/acceptor ratio of 0.25:1. This work demonstrates a simple and effective approach to realizing high PCE and AVT of ST‐OSCs simultaneously.  相似文献   

6.
The open‐circuit voltage (VOC) of an organic solar cell is limited by the donor‐acceptor material system. The effective gap Egeff between the electron affinity of the acceptor and the ionization potential of the donor is usually regarded as the upper limit for VOC, which is only reached for T → 0 K. This relation is confirmed for a number of small‐molecule bulk heterojunction p‐i‐n type solar cells by varying the temperature and illumination intensity. With high precision, the low temperature limit of VOC is identical to Egeff. Furthermore, the influence of the hole transport material in a p‐doped hole transport layer and the donor‐acceptor mixing ratio on this limit V0 is found to be negligible. Varying the active material system, the quantitative relation between V0 and Egeff is found to be identity. A comparison of V0 in a series of nine different donor‐acceptor material combinations opens a pathway to quantitatively determine the ionization potential of a donor material or the electron affinity of an acceptor material.  相似文献   

7.
The recombination dynamics of charge carriers in organic bulk‐heterojunction (BHJ) solar cells made of the blend system poly(2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[2,3‐b]thiophene) (pBTCT‐C12):[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) with a donor–acceptor ratio of 1:1 and 1:4 are studied here. The techniques of charge‐carrier extraction by linearly increasing voltage (photo‐CELIV) and, as local probe, time‐resolved microwave conductivity are used. A difference of one order of magnitude is observed between the two blends in the initially extracted charge‐carrier concentration in the photo‐CELIV experiment, which can be assigned to an enhanced geminate recombination that arises through a fine interpenetrating network with isolated phase regions in the 1:1 pBTCT‐C12:PC61BM BHJ solar cells. In contrast, extensive phase segregation in 1:4 blend devices leads to an efficient polaron generation that results in an increased short‐circuit current density of the solar cells. For both studied ratios a bimolecular recombination of polarons is found using the complementary experiments. The charge‐carrier decay order of above two for temperatures below 300 K can be explained on the basis of a release of trapped charges. This mechanism leads to delayed bimolecular recombination processes. The experimental findings can be generalized to all polymer:fullerene blend systems allowing for phase segregation.  相似文献   

8.
Semitransparent organic solar cells (ST-OSCs) have attracted increasing attention due to their promising prospect in building-integrated photovoltaics. Generally, efficient ST-OSCs with good average visible transmittance (AVT) can be realized by developing active layer materials with light absorption far from the visible light range. Herein, the development of ultrawide bandgap polymer donors with near-ultraviolet absorption, paired with near-infrared acceptors, is proposed to achieve high-performance ST-OSCs. The key points for the design of ultrawide bandgap polymers include constructing donor–donor type conjugated skeleton, suppressing the quinoidal resonance effect, and minimizing the twist of conjugated skeleton via noncovalent conformational locks. As a proof of concept, a polymer named PBOF with an optical bandgap of 2.20 eV is synthesized, which exhibited largely reduced overlap with the human eye photopic response spectrum and afforded a power conversion efficiency (PCE) of 16.40% in opaque device. As a result, ST-OSCs with a PCE over 10% and an AVT over 30% are achieved without optical modulation. Moreover, colorful ST-OSCs with visual aesthetics can be achieved by tuning the donor/acceptor weight ratio in active layer benefiting from the ultrawide bandgap nature of PBOF. This study demonstrates the great potential of ultrawide bandgap polymers for efficient colorful ST-OSCs.  相似文献   

9.
A solution‐processed polymer tandem cell fabricated by stacking two single cells in series is demonstrated. The two bulk‐heterojunction subcells have complementary absorption maxima at λmax ~ 850 nm and λmax ~ 550 nm, respectively. A composite middle electrode is applied that serves both as a charge‐recombination center and as a protecting layer for the first cell during spin‐coating of the second cell. The subcells are electronically coupled in series, which leads to a high open‐circuit voltage of 1.4 V, equal to the sum of each subcell. The layer thickness of the first (bottom) cell is tuned to maximize the optical absorption of the second (top) cell. The performance of the tandem cell is presently limited by the relatively low photocurrent generation in the small‐bandgap polymer of the top cell. The combination of our tandem architecture with more efficient small‐bandgap materials will enable the realization of highly efficient organic solar cells in the near future.  相似文献   

10.
An effective method for depositing highly transparent and conductive ultrathin silver (Ag) electrodes using minimal oxidation is reported. The minimal oxidation of Ag layers significantly improves the intrinsic optical and structural properties of Ag without any degradation of its electrical conductivity. Oxygen‐doped Ag (AgOx) layers of thicknesses as low as 6 nm exhibit completely 2D and continuous morphologies on ZnO films, smaller optical reflections and absorbances, and smaller sheet resistances compared with those of discontinuous and granular‐type Ag layers of the same thickness. A ZnO/AgOx/ZnO (ZAOZ) electrode using an AgOx (O/Ag = 3.4 at%) layer deposited on polyethylene terephthalate substrates at room temperature shows an average transmittance of 91%, with a maximum transmittance of 95%, over spectral range 400?1000 nm and a sheet resistance of 20 Ω sq?1. The average transmittance value is increased by about 18% on replacing a conventional ZnO/Ag/ZnO (ZAZ) electrode with the ZAOZ electrode. The ZAOZ electrode is a promising bottom transparent conducting electrode for highly flexible inverted organic solar cells (IOSCs), and it achieves a power conversion efficiency (PCE) of 6.34%, whereas an IOSC using the ZAZ electrode exhibits a much lower PCE of 5.65%.  相似文献   

11.
Small amounts of impurity, even one part in one thousand, in polymer bulk heterojunction solar cells can alter the electronic properties of the device, including reducing the open circuit voltage, the short circuit current and the fill factor. Steady state studies show a dramatic increase in the trap‐assisted recombination rate when [6,6]‐phenyl C84 butyric acid methyl ester (PC84BM) is introduced as a trap site in polymer bulk heterojunction solar cells made of a blend of the copolymer poly[N‐9″‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole) (PCDTBT) and the fullerene derivative [6,6]‐phenyl C61 butyric acid methyl ester (PC60BM). The trap density dependent recombination studied here can be described as a combination of bimolecular and Shockley–Read–Hall recombination; the latter is dramatically enhanced by the addition of the PC84BM traps. This study reveals the importance of impurities in limiting the efficiency of organic solar cell devices and gives insight into the mechanism of the trap‐induced recombination loss.  相似文献   

12.
The effect of the cross-coupling catalyst tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) on the performance of a model organic bulk-heterojunction solar cell composed of a blend of poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7-Th) donor and 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (IOTIC-4F) non-fullerene acceptor is investigated. The effect of intentional addition of different amounts of Pd(PPh3)4 on morphology, free charge carrier generation, non-geminate bulk trap- and surface trap-assisted recombination as well as bimolecular recombination and charge extraction is quantified. This work shows that free charge carrier generation is affected significantly, while the impact of Pd(PPh3)4 on non-geminate recombination processes is limited because the catalyst does not facilitate efficient trap-assisted recombination. The studied system shows substantial robustness towards the addition of Pd(PPh3)4 in small amounts.  相似文献   

13.
The relationship between the exciton binding energies of several pure organic dyes and their chemical structures is explored using density functional theory calculations in order to optimize the molecular design in terms of the light‐to‐electric energy‐conversion efficiency in dye‐sensitized solar cell devices. Comparing calculations with measurements reveals that the exciton binding energy and quantum yield are inversely correlated, implying that dyes with lower exciton binding energy produce electric current from the absorbed photons more efficiently. When a strong electron‐accepting moiety is inserted in the middle of the dye framework, the light‐to‐electric energy‐conversion behavior significantly deteriorates. As verified by electronic‐structure calculations, this is likely due to electron localization near the electron‐deficient group. The combined computational and experimental design approach provides insight into the functioning of organic photosensitizing dyes for solar‐cell applications. This is exemplified by the development of a novel, all‐organic dye (EB‐01) exhibiting a power conversion efficiency of over 9%.  相似文献   

14.
Regarded as a critical step in commercial applications, scalable printing technology has become a research frontier in the field of organic solar cells. However, inevitable efficiency loss always occurs in the lab‐to‐manufacturing translation due to the different fabrication processes. In fact, the decline of photovoltaic performance is mainly related to voltage loss, which is mainly affected by the diversity of phase separation morphology and the chemical structures of photoactive materials. Fullerene derivative indene‐C60 bisadduct (ICBA) is introduced into a PBDB‐T‐2F:IT‐4F system to control the active layer morphology during blade‐coating process. Accordingly, as a symmetrical fullerene derivative, ICBA can regulate the crystallization tendency and molecular packing orientation and suppress charge carrier recombination. This ternary strategy overcomes the morphology issues caused by weaker shear impulse in blade‐coating process. Benefiting from the reduced nonradiative recombination loss, 1.05 cm2 devices are fabricated by blade coating with a power conversion efficiency of 13.70%. This approach provides an effective support for recovering the voltage loss during scalable printing approaches.  相似文献   

15.
The role of excess photon energy on charge generation efficiency in bulk heterojunction solar cells is still an open issue for the organic photovoltaic community. Here, the spectral dependence of the internal quantum efficiency (IQE) for a poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b]­dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)]:6,6‐phenyl‐C61‐butyric acid methyl ester (PCPDTBT:PC60BM)‐based solar cell is derived combining accurate optoelectronic characterization and comprehensive optical modeling. This joint approach is shown to be essential to get reliable values of the IQE. Photons with energy higher than the bandgap of the donor material can effectively contribute to enhance the IQE of the solar cell. This holds true independently of the device architecture, reflecting an intrinsic property of the active material. Moreover, the nanomorphology of the bulk heterojunction plays a crucial role in determining the IQE spectral dependence: the coarser and more crystalline, the lesser the gain in IQE upon high energy excitation.  相似文献   

16.
Ultraflexible and ultra-lightweight organic solar cells (OSCs) have attracted great attention in terms of power supply in wearable electronic systems. Here, ultrathin and ultra-lightweight OSCs, with a total thickness of less than 3 µm, with excellent mechanical properties in terms of their flexibility and ability to be stretched are demonstrated. A stabilized power conversion efficiency (PCE) of 15.5% and unprecedented power-per-weight of 32.07 W g−1 at a weight of 4.83 g m−2 is achieved, which represents one of the best-performing OSCs based on ultrathin foils substrate reported to date. The ternary strategy introduces the third component of amorphous conformation of the PC71BM molecule, which can slightly reduce crystallization and aggregates without decreasing the electron mobility, thereby reducing rigidity and brittleness of the active layer. The increase in the ductility of the active layer significantly improves the mechanical flexibility of the device, resulting in over 90% retention in the PCE after 200 stretching–compression cycles. In addition, the ternary device exhibits excellent stability when stored in a N2-filled glove box, resulting in the PCE retaining over 95% of its initial efficiency even after 1000 h. This ultraflexible and ultra-lightweight photovoltaic foils constitute a major step toward the integration of power supply into malleable electronic textiles.  相似文献   

17.
The charge transport in organic solar cells is investigated by surface potential measurements via scanning Kelvin probe microscopy. Access to the solar cell's cross‐section is gained by milling holes with a focused ion beam which enables the direct scan along the charge transport path. In a study of poly(3‐hexylthiophene):1‐(3‐methoxycarbonyl)propyl‐1‐phenyl[6,6]C61 (P3HT:PCBM) bulk heterojunction solar cells, the open circuit voltage is built up at the top contact. A comparison of the potential distribution within normal and inverted solar cells under operation exhibits strongly different behaviors, which can be assigned to a difference in interface properties.  相似文献   

18.
Organic light emitting diodes (OLEDs) employing organic thin-film based emitters have attracted tremendous attention due to their widespread applications in lighting and as displays in mobile devices and televisions. The novel thin-film photovoltaic techniques using organic or organic–inorganic hybrid materials such as organic photovoltaics (OPVs) and perovskite solar cells (PSCs) have become emerging competitive candidates with regard to the traditional photovoltaic techniques on account of high-efficiency, low-cost, and simple manufacturing processing properties. However, OLEDs, OPVs, and PSCs are vulnerable to the undesired degradation induced by moisture and oxygen. To afford long-term stability, a robust encapsulation technique by employing materials and structures that possess high barrier performance against oxygen and moisture must be explored and employed to protect these devices. Herein, the recent progress on specific encapsulation materials and techniques for three types of devices on the basis of fundamental understanding of device stability is reviewed. First, their degradation mechanisms, as well as, influencing factors are discussed. Then, the encapsulation technologies and materials are classified and discussed. Moreover, the advantages and disadvantages of various encapsulation technologies and materials coupled with their encapsulation applications in different devices are compared. Finally, the ongoing challenges and future perspectives of encapsulation frontier are provided.  相似文献   

19.
The physical origin of the open‐circuit voltage in bulk heterojunction solar cells is still not well understood. While significant evidence exists to indicate that the open‐circuit voltage is limited by the molecular orbital energies of the heterojunction components, it is clear that this picture is not sufficient to explain the significant variations which often occur between cells fabricated from the same heterojunction components. We present here an analysis of the variation in open‐circuit voltage between 0.4–0.65 V observed for a range of P3HT/PCBM solar cells where device deposition conditions, electrode structure, active‐layer thickness and device polarity are varied. The analysis quantifies non‐geminate recombination losses of dissociated carriers in these cells, measured under device operating conditions. It is found that at open‐circuit, losses due to non‐geminate recombination are sufficiently large that other loss pathways may effectively be neglected. Variations in open‐circuit voltage between different devices are shown to arise from differences in the rate coefficient for non‐geminate recombination, and from differences in the charge densities in the photoactive layer of the device. The origin of these differences is discussed, particularly with regard to variations in film microstructure. By separately quantifying these differences in rate coefficient and charge density, and by application of a simple physical model based upon the assumption that open‐circuit is reached when the flux of charge photogeneration is matched by the flux of non‐geminate recombination, we are able to calculate correctly the open‐circuit voltage for all the cells studied to within an accuracy of ±5 mV.  相似文献   

20.
The research on transparent conductive electrodes is in rapid ascent in order to respond to the requests of novel optoelectronic devices. The synergic coupling of silver nanowires (AgNWs) and high‐quality solution‐processable exfoliated graphene (EG) enables an efficient transparent conductor with low‐surface roughness of 4.6 nm, low sheet resistance of 13.7 Ω sq?1 at high transmittance, and superior mechanical and chemical stabilities. The developed AgNWs–EG films are versatile for a wide variety of optoelectronics. As an example, when used as a bottom electrode in organic solar cell and polymer light‐emitting diode, the devices exhibit a power conversion efficiency of 6.6% and an external quantum efficiency of 4.4%, respectively, comparable to their commercial indium tin oxide counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号