首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该文探讨了利用相空间重构和支持向量机进行衰落信道非线性预测算法。该算法基于多径衰落信道具有混沌行为,利用坐标延迟理论,重建衰落信道系数的相空间,再根据混沌吸引子的稳定性和分形性,在相空间中通过递归最小二乘支持向量机(RLS-SVM)进行预测。该算法对原始数据可以进行更平滑的处理,在噪声环境下预测的时间范围更长。对时间跨度为63.829ms的衰落系数进行了预测,仿真结果表明,在信噪比为15dB时,预测结果优于AR算法。  相似文献   

2.
An error probability analysis is performed for an orthogonal noncoherent M-ary frequency-shift keying (MFSK) communication system employing fast frequency-hopped (FFH) spread spectrum with diversity. The signal is assumed to be transmitted through a frequency-nonselective slowly fading channel with partial-band noise interference. The partial-band interference is modeled as a Gaussian process. Both the information signal and the partial-band noise interference signal are assumed to be affected by channel fading; it is assumed that the two fading processes are independent and that channel fading need not necessarily affect the information signal and the interference signal in the same way. Each diversity reception is assumed to fade independently according to a Rician process. Adaptive gain control is employed to minimize partial-band interference effects, and the effect of inaccurate noise measurement on the ability of the adaptive gain control receiver to reject partial-band interference is examined. The effect of thermal noise is included in the analysis  相似文献   

3.
We derive the analytical bit-error rate (BER) expressions for a fast frequency-hopped binary frequency-shift keying self-normalizing receiver over a fading channel with the worst-case band multitone jamming (MTJ) and additive white Gaussian noise (AWGN). The desired signal and MTJ are assumed to undergo independent Rician fading and our analyses, validated with simulation results, show that the system performance is not sensitive to different types of MTJ fading conditions. The self-normalizing receiver is found to be superior to the linear-combining receiver when the signal amplitude does not experience severe fading, while the converse is true under Rayleigh fading signal conditions. Under a Rician fading channel and AWGN conditions, the worst-case MTJ and the worst-case partial-band noise jamming are shown to have similar effects on the BER performance of the self-normalizing receiver with diversity  相似文献   

4.
该文提出一种新的混沌信号降噪方法——微扰法,并且给出了微扰法的一个具体实例算法——梯度微扰法。该文还对用梯度微扰法进行混沌信号降噪的效果进行了实验研究。实验结果表明,梯度微扰法能够在低信噪比时得到很好的降噪效果。文中还对梯度微扰法的参数选择问题进行了实验研究。  相似文献   

5.
该文提出一种新的混沌信号降噪方法微扰法,并且给出了微扰法的一个具体实例算法梯度微扰法。该文还对用梯度微扰法进行混沌信号降噪的效果进行了实验研究。实验结果表明,梯度微扰法能够在低信噪比时得到很好的降噪效果。文中还对梯度微扰法的参数选择问题进行了实验研究。  相似文献   

6.
该文分析了在存在噪声干扰的情况下,进行估计快衰信道的方法。在无线通信系统中,快衰信道可以采用AR(Auto-Regressive)模型进行预测,而LS (Least Square)算法和自适应Kalman滤波器可以分别对AR模型的参数和信道的冲激响应进行估计,但是这两种算法对噪声干扰非常敏感。该文提出改进型的RLM算法和Kalman 滤波器,并在存在噪声的情况下,使用它们并行对AR参数和信道的冲激响应进行联合估计。仿真结果显示:相比于传统的算法,改进后的算法在联合估计信道时,提高了抵抗大脉冲干扰的能力,加快了待估的参数的收敛速度。  相似文献   

7.
The bit-error probability (BEP) is evaluated for a fast frequency-hopping/binary frequency-shift keying spread-spectrum communication system over a frequency-nonselective, slowly fading channel with worst-case band multitone jamming and additive white Gaussian noise. A diversity reception technique with ratio-statistic combining is applied at the receiver. Both square-law and envelope detectors are utilized and analyzed. Based on circularly symmetric signal theory, the paper obtains the closed-form expressions of probability density function and cumulative distribution function of the ratio-statistic output. It is shown from the analytical results, and verified by simulation, that the BEP performance of the ratio-statistic receiver is sensitive to the fading effect on the desired signal, but is insensitive to that on the jamming tones. It is also shown that the envelope detector provides better performance than the square-law detector.  相似文献   

8.
Inter-carrier interference (ICI) reduction techniques achieve a better carrier-to-interference ratio (CIR) in OFDM system in the presence of synchronisation errors. However, the frequency diversity available on the frequency-selective channel has not been utilised by conventional ICI reduction techniques. In this paper, the frequency diversity of ICI reduction methods in the presence of phase noise over frequency-selective fading channels is analysed. Based on the analysis, an ICI reduction technique is proposed, enhanced symmetric data-conjugate (ESDC) technique, to enhance the frequency diversity in multipath fading channel. The carrier-to-interference ratio (CIR) and common phase error (CPE) of the proposed ICI reduction scheme are derived and the BER performance of the proposed system is compared with the conventional ICI reduction methods such as adjacent data-conjugate (ADC) and symmetric data-conjugate (SDC) methods. Simulation results reveal that the proposed ICI reduction scheme provides an improvement in BER performance over a fading channel and it is also better than conventional ICI reduction techniques in the presence of ICI due to phase noise.  相似文献   

9.
Analytical expressions for bit-error probability are derived for a fast frequency-hopping binary frequency-shift keying (FFH/BFSK) spread-spectrum communication system over a fading channel with worst-case band multitone jamming (MTJ) and additive white Gaussian noise (AWGN). An FFH system employing either a linear-combining receiver or a clipper receiver is investigated. The desired signal and MTJ are assumed to undergo independent fading, and our analysis, validated with simulation results, shows that the performance of the system is slightly improved as the severity of the MTJ fading is increased. The clipper receiver is found to be superior to the linear-combining receiver when the jamming power is strong. The worst-case MTJ is shown to be more harmful than the corresponding worst-case partial-band noise jamming over a fading channel with AWGN  相似文献   

10.
We present the performance analysis of a fast frequency-hopped (FH) binary orthogonal frequency-shift keying acquisition receiver for communication against adverse environments. The receiver employs noncoherent, noise-normalized, matched-filtered (MF) correlation detection for rapid acquisition in the search mode. Our analysis includes four types of communication environments, namely additive white Gaussian noise (AWGN) channel, AWGN channel with partial-band noise jamming, fading channels, and fading channels with partial-band noise jamming. The considered fading channels include Nakagami-m, Rician, and Rayleigh amplitude models. Based on Beaulieu's (see ibid., vol.38, no.9, p.1463, 1990) convergent series approach, efficient analytical formulas are developed for performance evaluation. Example performance results for various environments are presented in terms of two acquisition probabilities, namely the detection probability and the false alarm probability of the noise-normalized MF detector. It is analytically shown that with a short MF correlation length and with a sufficiently large ratio of signal power to noise power the fast FH diversity combining yields noticeable performance improvement for environments with strong fading. When the MF correlation is lengthened, this improvement tends to fade away and the diversity combining results in performance loss  相似文献   

11.
The performance of a first-order digital phase-locked loop (DPLL) using nonuniform sampling is studied in the mobile radio environments. The mobile radio channel is characterized by introducing fast Rayleigh fading and random phase variation to the signal envelope and phase, respectively. The nonlinear stochastic difference equation describing the loop operation in fading environments is introduced. The joint probability density function (pdf) of the random variables of this equation is derived by transformation of random variables for fast Rayleigh fading channels. A closed-form expression for the transition probability of the ChapmanKolmogorov (C-K) equation is obtained for phase step plus noise input and for frequency step plus noise input. The probability density function of the steady-state phase error is obtained by solving the C-K equation numerically.  相似文献   

12.
王琦峰  江桦 《信号处理》2014,30(3):314-320
针对认知无线电系统中OFDM(orthogonal frequency division multiplexing)信号信噪比估计算法适用范围受限、复杂度高的问题,提出一种新的基于符号相关性的信噪比盲估计算法,算法首先通过扩展前缀相关性检测区间得到一个特征序列,然后通过小波消噪去除多径信道的影响,最后通过序列极大值极小值与信号功率及噪声方差的关系得到信噪比的估计值。仿真结果表明,本文算法能够实现对ZP-OFDM(zero-padding OFDM)信号信噪比的准确估计,同时在应用于CP-OFDM(cyclic-prefix OFDM)信噪比估计时适用范围更广、运算更为简便,更加适用于认知无线电系统。   相似文献   

13.
A blind particle learning detector (BPLD) is developed for signal detection in Rayleigh flat-fading channels with non-Gaussian interference. The parameters of the fading channel model and the noise model are all unknown. The impulsive noise is modeled as a mixture of Gaussian distributions, which is capable of representing a broad class of non-Gaussian noise. The particle learning algorithm is employed to simultaneously estimate signal and parameters of the fading channel model and the noise model. The delay weight method is used to improve the performance. Simulation results show that the performance of the BPLD proposed can follow closely the performance of the detector with known parameters of the fading channel model and the noise model.  相似文献   

14.
In this paper, we investigate the scheduling problem to achieve the proportional fairness among the flows in wireless multihop networks with time-varying channel capacity. Using the signal to interference noise ratio and the outage probability, we present an estimate of time-varying capacity. Then, we achieve the proportional fairness in terms of maximizing the network utility function with consideration of fast fading without measurement of channel state information. Finally, we show that the proposed scheme results in better performance compared to the existing schemes through the simulation results.  相似文献   

15.
Hierarchical modulation can be effectively used to enhance terrestrial digital multimedia broadcasting (T-DMB) or digital audio broadcasting (DAB) systems in response to both the demand for higher data-rate and the need to be backward compatible with legacy receivers. QAM-type modulations are well-liked for hierarchical transmission but require coherent detection based on pilot symbol aided channel estimation. In the T-DMB or the DAB system using DQPSK modulation, however, any available pilot symbols except for the phase reference symbol do not exist. Differential amplitude phase shift keying (DAPSK) modulation is easily applied to the T-DMB system for a hierarchical modulation but may be susceptible to fast fading. As a good candidate for a hierarchical modulation of T-DMB to solve the above problems, we propose an amplitude differential phase shift keying (A-DPSK) modulation which is robust to fast fading by estimating only amplitude coefficients of the channel transfer function with the use of amplitude pilots. To raise the accuracy of channel estimation, we arrange the amplitude pilots in a come-type and introduce a noise-reduction scheme of averaging estimated channel coefficients. Simulation results show that the proposed A-DPSK provides a good choice for achieving a higher data-rate over other possible modulation schemes for advanced T-DMB or DAB systems.   相似文献   

16.
Orthogonal frequency division multiplexing (OFDM) has been adopted for several wireless network standards due to its robustness against multipath fading. Main drawback of OFDM is its high peak‐to‐average power ratio (PAPR) that causes a signal degradation in a peak‐limiting (e.g., clipping) channel leading to a higher bit error rate (BER). At the receiver end, the effect of peak limitation can be removed to some extent to improve the system performance. In this paper, a joint iterative channel estimation/equalization and clipping noise reduction technique based on minimum mean square error (MMSE) criterion is presented. The equalization weight that minimizes the mean square error (MSE) between the signal after channel equalization and feedback signal after clipping noise reduction is derived assuming imperfect channel state information (CSI). The MSE performance of the proposed technique is theoretically evaluated. It is shown that the BER performance of OFDM with proposed technique can be significantly improved in a peak‐limited and doubly‐selective (i.e., time‐ and frequency‐selective) fading channel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A Gaussian minimum-shift keying (GMSK) modem with built-in fade canceler is proposed narrowband mobile digital broadcasting systems. The proposed scheme combines DC suppressing line code and high-pass filters to create a spectral null at the carrier frequency of the transmit GMSK signal spectrum. This enables an unmodulated carrier pilot tone to be transmitted with the digital broadcast signal without mutual interference. In the receiver, the recovered pilot is used to coherently demodulate the received signal without phase ambiguity. The pilot can be also be used to track and cancel out the random phase noise induced by fast fading. The scheme is applied to a 16 kb/s BT=0.25 GMSK signal with Bv=800 Hz, and its performance over a fast Rayleigh fading channel is investigated using computer simulation. The results demonstrates that the proposed coherent modem is capable of significantly outperforming conventional differential detection in fast fading environments such as a broadcasting channel for mobile reception  相似文献   

18.
A blind maximum likelihood equalization method is proposed for frequency selective fast fading Ricean channels. This method employs the expectation-maximization Viterbi algorithm (EMVA) developed in for blind channel estimation and signal detection. Since the Viterbi algorithm (VA) is used to execute the E-phase of an expectation-maximization (EM) iteration, it requires that the observed sequence can be modelled as a finite-state hidden Markov process. We develop a hidden Markov model for frequency selective fast fading Ricean channels, so that the observed process can be viewed as the noisy output of a finite state machine (FSM), to which the VA is applicable. The EMVA is then employed to obtain a blind maximum likelihood estimate of the specular part of the channel and, for one special case, of a noise parameter measuring the total power of the additive and multiplicative channel noise components. Simulation results are presented which show that the EMVA achieves an accurate estimate of the channel specular part and has an error rate performance close to that of the maximum likelihood detector based on true parameters for the given FSM model.  相似文献   

19.
Frequency domain equalization (FDE) has been studied for reducing inter-symbol interference (ISI) caused by frequency selective fading in single carrier systems. When a high-mobility terminal exists in the system, the channel state may change within a DFT block. Then, the ISI reduction performance of FDE degrades since cyclicity of the channel matrix is lost. We propose to divide a received data block into multiple subblocks to decrease the channel transition within the DFT block in fast fading environments. Also, to satisfy periodicity of the received signal in each subblock, we introduce a pseudo cyclic prefix technique. The results of numerical analysis show that the proposed method can effectively decrease the error floor in fast fading environments.  相似文献   

20.
在高速衰落多径信道中,传统的Rake接收机的性能会大大降低。本文基于自子波变换和时间、尺度分辨率的概念,从理论和仿真实验两方面对信道建模和时间/尺度Rake接收机进行了分析,并与传统的Rake接收机进行了比较,结果表明时间/尺度联合分集能有效地克服高速衰落多径信道的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号