首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为提高聚丙烯腈(PAN)纤维的阻燃性能,采用水合肼对PAN纤维进行直接化学改性的方式制备了阻燃PAN纤维,采用傅里叶变换红外光谱及X射线衍射对纤维结构进行了表征,利用差示扫描量热、热重分析对纤维的热性能进行了研究,通过极限氧指数仪及微型锥形量热仪对纤维的阻燃性能进行了研究,并对其力学性能进行了测试。结果表明,水合肼与PAN纤维反应生成了C=N键,改性后的PAN纤维的晶型发生了改变,结晶度下降,PAN的环化放热峰值温度下降约160℃,其阻燃性能及成炭性提高;改性后PAN纤维的断裂强度及断裂伸长率分别下降32.4%和30.6%,随着改性时间的延长,PAN纤维的阻燃性能显著提高,热释放速率(HRR)降低84.2%,且热释放速率峰值温度提高98.01℃。  相似文献   

2.
聚丙烯的阻燃改性   总被引:1,自引:0,他引:1  
  相似文献   

3.
综合论述了聚丙烯腈基(PAN)碳纤维电化学表面改性处理研究的发展现状,对比分析了碳纤维电化学改性处理法的研究内容及表征手段,指出了存在的问题,并展望了碳纤维表面电化学改性处理的研究前景.在碳纤维改性工艺参数的研究工作中,为了使实验结果有可比性,迫切需要一套标准来规范实验条件及性能表征方法,而为了更好地体现碳纤维复合材料的性能优势,仍需不断探索和研究碳纤维的电化学改性机理.为使复合材料的性能更好地达到应用要求,有必要提出碳纤维表面改性模型及界面理论.  相似文献   

4.
近年来,由纺织品引起的火灾问题引起世界各国人们的重视。随着各类民用和产业用纺织品的消费量迅速增加,由纺织品引发的火灾机率也上升。加强对织物阻燃技术的研究成为当前学术界的一个重大课题。世界各国主要从以下两个方面来开展对织物阻燃技术的研究:一是如何生产阻燃纤维;二是对织物进行阻燃整理。  相似文献   

5.
对聚磷酸蜜胺脂进行包覆改性,并对改性过程中的各种反应因素,对包覆聚磷酸蜜胺脂含磷量的影响进行了详细的研究。包覆后的聚磷酸蜜胺脂的初始失重温度得以提高,并改善了与基材的相容性。  相似文献   

6.
无机复合超细阻燃填料的表面改性   总被引:2,自引:1,他引:1  
对适宜配比的硅镁铝粉-氢氧化镁复合阻燃填料进行了表面改性方法和配方研究,考察改性方法、改性剂配方、改性剂用量等对复合阻燃填料填充效果的影响。采用红外光谱和扫描电镜对复合阻燃填料进行测试分析。结果表明:湿法改性效果好于干法,最佳的表面改性剂为硅烷SCA313和脂肪酸的复配,适宜的用量为w(SCA313)=0.6%、w(脂肪酸)=1.0%;改性剂以化学吸附方式协同包覆于填料表面。  相似文献   

7.
主要介绍了聚丙烯腈及丙烯腈共聚物分离膜的表面改性研究进展,重点在于表面化学改性和表面仿生改性两种方法。  相似文献   

8.
郭鹏宗  白玉俊 《功能材料》2007,38(11):1800-1801,1805
用KMnO4对聚丙烯腈原丝进行化学改性处理,并通过傅立叶变换红外光谱仪、X射线衍射仪、示差扫描量热仪等测试手段研究了改性前后原丝的反应动力学,热性能,化学结构以及晶体结构的变化.结果表明,聚丙烯腈原丝经KMnO4改性处理后,环化反应所需的激活能降低,使原丝能在比较低的温度下开始环化反应,同时环化反应的放热量也有所增加;由于KMnO4的催化作用,使得改性处理后的PAN原丝形成了-C=C-共轭结构;经KMnO4改性后原丝的晶体尺寸有所减小,这样有利于预氧化阶段氧的扩散,促进预氧化阶段的结构转变.  相似文献   

9.
噁唑啉类化合物在聚合物改性中的应用   总被引:5,自引:1,他引:4  
综述了唑啉用于聚合物增粘改性及聚合物共混改性研究 ,如双唑啉被用作线性扩链剂以及唑啉化的聚合物作为反应性相容剂  相似文献   

10.
硬段阻燃改性水性聚氨酯的合成与性能   总被引:5,自引:1,他引:4  
以二溴新戊二醇(DBNPG)为扩链剂,用硬段改性的方式将阻燃元素引入到水性聚氨酯中,合成出一系列不同改性程度的阻燃水性聚氨酯。用傅立叶红外光谱、核磁碳谱表征了合成产物;并用氧指数仪、TG热重分析仪、DSC差热分析仪对其进行研究。结果表明,15%(质量百分含量)DBNPG改性的水性聚氨酯氧指数已达29.6%;与未改性水性聚氨酯相比,其热稳定性提高;相分离程度随改性程度不同而规律性变化。  相似文献   

11.
Carbon nanotubes (CNTs) due to their nonreactive surface can not effectively disperse in polymeric matrix. Efficient exploitation of CNTs properties to improve material performance is generally related to the degree of dispersion, saturation by the matrix and interfacial adhesion. In order to obtain a suitable dispersion, the CNTs usually need treatment before they can be utilized. In this work, an easy procedure for preparation a stable dispersion of well separated and individual CNTs in an aqueous polymeric solution by using of Gum Arabic (GA) and modified polymer has been described. The applied polymer was a modified water soluble acrylonitrile polymer. The modification was carried out through functionalizing polyacrylonitrile by 2‐aminoethanol. Individual dispersion of the CNTs in the aqueous GA solution after two month can be observed. By incorporating the modified polyacrylonitrile to the solution, the stability of the individual CNTs dispersion several times was increased in such a way that after six month, the CNTs were still kept at their individual positions. According to the suggested mechanism of dispersion, hydrogen bonds between GA/CNTs and the modified polyacrylonitrile chains can be formed that increasing the dispersion ability. The effects of salts and temperature on dispersion ability of GA were also studied.  相似文献   

12.
预氧化对聚丙烯腈膜结构及性能的影响研究   总被引:1,自引:0,他引:1  
以聚丙烯腈(PAN)为前驱体,N-甲基吡咯烷酮为溶剂,水为凝胶介质,采用干-湿相转化法制备不对称PAN基聚合物膜,通过FT-IR、XRD、SEM等手段进行结构表征及恒压力变体积法测试气体渗透性能,主要探讨了PAN膜在空气预氧化处理过程中的化学和微结构变化规律及预氧化工艺条件(预氧化温度、恒温时间及空气流率)对PAN膜的结构和气体渗透分离性能的影响.研究表明,在空气预氧化过程中,PAN膜的化学结构经氧化交联由线性结构转变为体型结构,PAN由热塑性变为热固性材料.预氧化工艺对PAN膜性能有很大的影响.提高预氧化温度、延长恒温时间以及增大空气流率均有利于膜性能的提高,但当预氧化条件超过一定程度后,膜性能反而降低.SEM分析表明,预氧化处理后的膜仍具有聚合物膜的基本孔形貌.  相似文献   

13.
为节省预氧化进程的能耗和时间并优化聚丙烯腈(PAN)预氧纤维的性能,用H2O2改性PAN原丝,使其提前环化。采用FTIR、XPS等方法表征不同处理温度获得的未改性和改性PAN原丝。结果表明:H2O2水溶液在60℃改性PAN原丝时,H2O2可引发氰基环化,末端环发生亚胺、烯胺互变异构,由此出现亚氰基、类芳香伯胺;改性温度越高,改性PAN原丝的亚氰基含量、共轭程度越大。在模拟稳定化过程中,改性PAN原丝的类芳香伯胺可在较低温度下引发相邻氰基环化。使用氨水(NH3H2O)作为助剂获得改性PAN原丝,与未改性PAN原丝经历相同的预氧化进程,改性后的PAN原丝能在较短时间内达到适合的预氧化程度,且PAN预氧纤维径向结构的均匀性被改善,由此获得热稳定性更高的PAN预氧纤维。   相似文献   

14.
超声蚀刻对PAN纤维组织结构与性能的影响   总被引:1,自引:0,他引:1  
用傅里叶红外光谱(FTIR)、广角X射线衍射(WAXD)、扫描电镜(SEM)等方法测定并分析超声蚀刻对聚丙烯腈(PAN)纤维的化学结构、结晶、形态结构和机械性能的影响,为利用超声蚀刻方法制备电镜样品、研究PAN纤维结构奠定实验基础。实验结果表明:超声蚀刻处理对PAN纤维化学结构没有影响;溶解的PAN分子量随着超声时间延长而降低,未溶解的PAN分子量基本没有变化;这种处理会使纤维的结晶度和晶粒尺寸均小幅下降;经过超声蚀刻后纤维表面出现大量的原纤结构,能够实现原纤分离;这种处理对纤维的线密度影响不大,而纤维强度、断裂伸长率和初始模量均有所下降。  相似文献   

15.
以介孔硅藻为改性剂改性制备了不同掺量的介孔硅改性沥青,通过IR、SEM、OM对其改性过程及其改性机制进行了微观分析,并根据IR、SEM以及沥青四组分的分析结果绘制出改性过程模型图,利用TG及针入度、软化点、延度等测试方法对不同掺量介孔硅改性沥青与原质沥青的相关性能进行了比较。结果表明:介孔硅改性沥青的过程没有明显的化学变化,主要为介孔硅物理吸附沥青的过程,介孔硅由于多孔、比表面积大的特性更易吸收沥青中流动性强、分子量小的溶剂组分(饱和组分及芳香组分)到其内部孔隙和周围,它们在温度降低时冷凝硬化与介孔硅相互固定形成均匀稳定的整体,这是介孔硅改性沥青高温性能提高的主要原因;介孔硅藻的掺量与改性沥青性能并不呈正相关,改性沥青的温度敏感性和低温性能会随着掺量的增加而变差,介孔硅质量分数为13%时,介孔硅改性沥青的综合性能相对较好。  相似文献   

16.
利用低温等离子体技术对聚丙烯腈超滤膜进行了气相接枝改性,研究了不同等离子体处理功率、时间、不同单体温度、反应时间对接枝反应的影响,用红外光谱(FT—IR)和X光电子能谱(XPS)分析膜的表面结构组成及变化;用扫描电子显微镜观测了表面形态;考察了等离子体改性膜对蔗糖/水体系的分离性能。结果表明,对聚丙烯腈膜表面接枝丙烯酸单体,可使聚丙烯腈膜从超滤膜向纳滤级膜转变。  相似文献   

17.
改性PAN共聚纤维在预氧化过程中的热应力应变   总被引:5,自引:3,他引:2  
用傅立叶红外光谱仪、广角X射线衍射仪、元素分析仪等表征了改性纤维和未改性纤维的结构变化和基本物化性质,测量了改性纤维和未改性纤维在预氧化过程中的热应力应变行为,研究了KMnO4改性对纤维结构均一性的影响.结果表明:改性纤维的热应力与热应变的变化与纤维聚集态结构、化学组成、热化学反应变化具有良好的关联性;热应力表征可用于控制纤维结构.改性提高了PAN纤维的均一性.与未改性纤维相比,KMnO4改性纤维化学反应主导的热应力提前出现约20℃,预氧化纤维的热应力增加约25%;在负荷相同的条件下,易收缩,难伸长;在牵伸比相同的情况下,取向度高7.8%,微晶尺寸小9.9%.通过改性可制备出结构更规整,更利于碳化的预氧化纤维.  相似文献   

18.
在梯度升温和恒温两种模式下,对聚丙烯腈(PAN)纤维进行了热氧稳定化处理,借助FTIR、核磁共振碳谱(13 C-NMR)、元素分析(EA)、DSC、X-射线能谱(EDS)、密度等多种表征手段系统研究了不同温度下热氧稳定化纤维皮-芯结构的形成机制和氧元素的扩散速率。研究结果表明:氧化反应速率小于氧的扩散速率时,PAN纤维...  相似文献   

19.
为了改善金刚石在聚合物中的均匀分散性,并提高导热性能,以不同粒度的金刚石和聚丙烯腈(PAN)共聚物为原料,采用静电纺丝方法制备得到金刚石/PAN杂化复合纤维。通过改变纺丝溶液中金刚石的添加量,研究了不同金刚石含量及不同粒度的金刚石对金刚石/PAN杂化复合纤维形态和热性能的影响。研究结果表明,静电纺丝可以有效解决微米级金刚石在PAN聚合物中的分散问题,金刚石的粒度对纺丝的稳定性和连续性影响很大,粒度为0.5~1 μm的金刚石经过纺丝可以有效地包覆在纤维中。当金刚石的粒度大于1~2 μm时,纺丝时稳定性差,纤维中很少或几乎没有包覆金刚石颗粒。当金刚石粒度为0.5~1 μm、实际质量分数为38.5wt%时,金刚石/PAN杂化复合纤维热导率最高,达到1.923 W/(m·K)。  相似文献   

20.
聚乳酸改性丝素膜的性能研究   总被引:3,自引:1,他引:2  
用不同分子量的聚乳酸共混改性丝素,研究结果表明,与纯的丝素膜相比,共混合膜的力学性能明显提高,透汽性也有所提高,但透湿性略有下降;聚乳酸的分子量对共混膜的力学性能、透湿性均有一定的影响,但对共混膜的透汽性影响不大.FTIR和XRD表征结果表明聚乳酸的加入丝素分子β构像的含量明显增多;用Vigot 函数以1265和1235cm-1为中心在1200~1300cm-1之间对红外光谱进行了分峰,用I1265/1235cm-1来表征混合膜中β构像丝素分子的含量,结果表明比例为5/100的聚乳酸/丝素共混膜中,丝素分子β构像含量最多,为0.64.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号