首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
柔性压力传感器因其在可穿戴设备和人机交互界面中的潜在应用而备受关注.特别是在实际应用中,人们对具有高灵敏度、宽测量范围和低成本的压力传感器有很大需求.基于此,我们研制出了一种测量范围宽的超灵敏压力传感器.该传感器是以碳纳米管(CNT)均匀溶液直接喷在纸表面作为敏感材料,用光刻技术制成的叉指电极为结构.由于CNT大的比表面积、纸的多孔结构以及CNT与叉指电极有效接触的协同作用,压力传感器实现了从0到140 kPa的宽测量范围,并在15,000个测试周期内表现出良好的稳定性.对于纸基碳纳米管薄膜/叉指状结构(PCI)压力传感器,敏感材料与叉指电极之间的连接区域在较小的压力范围内占主导地位,而敏感材料的内部变化在大的压力区域起主导作用.此外PCI压力传感器不仅具有2.72 kPa-1(直到35 kPa)的高灵敏度,还可以检测小重量,如一颗绿豆(约8 Pa).当压力传感器贴附到人体表面时,可以监测生理信号,如手腕运动、脉搏跳动和语音识别.此外,压力传感器的阵列能够识别空间压力分布,有望实际应用于人机交互界面.  相似文献   

2.
首先阐述了碳纳米管声学桥的这一新概念,即通过共振超声谱方法测量置放在两个微型压电换能器之间的碳纳米管的多个固有频率,确定其物理特性.作为碳纳米管声学桥的理论基础,文中应用解析方法和有限元数值方法分析了碳纳米管声学桥的声波传播特性,重点研究了碳纳米管声学桥结构尺寸与振动模式的品质因数之间的关系.在此基础上,探讨了声学桥的三个潜在应用场合:作为研究碳纳米管材料特性的有力工具;碳纳米管声学桥对微小质量变化具有10-220g/Hz的灵敏度,可作为高精度质量敏感元件;碳纳米管声学桥在周围环境真空压力改变时,谐振频率会变化,通过测量频移来确定真空压力,故碳纳米管声学桥可作为超高真空传感器.  相似文献   

3.
基于碳纳米管的生物传感器研究进展   总被引:1,自引:0,他引:1  
近年来,纳米材料得到广泛研究与应用,将纳米材料应用于生物传感器可以较大地提高传感器的响应性能,具有特殊结构的一雏纳米材料--碳纳米管为生物传感器的发展开辟了广阔的前景.综述了碳纳米管修饰电化学生物传感器研究中的最新进展,对基于碳纳米管的酶生物传感器、免疫传感器、DNA生物传感器的制备方法、优缺点进行了评述,并展望了碳纳米管修饰生物传感器研究的发展方向.  相似文献   

4.
分别对修饰的和未修饰的多壁碳纳米管(MWCNTs)薄膜的湿敏特性进行了研究,发现修饰的多壁碳纳米管(MWCNTs)薄膜对湿度十分敏感.测量其湿敏特性表明:其电阻值随相对湿度有明显的变化,并呈线性关系,通过拟合计算得到修饰的和未修饰的多壁碳纳米管电阻率相对湿度系数分别为2.354×10-2Ω·m/RH和1.534×10-2Ω·m/RH.研究结果表明,碳纳米管在湿度传感器领域将有巨大的应用前景.  相似文献   

5.
白玉峰  张云怀  肖鹏  贺建  徐小丁 《材料导报》2006,20(Z1):109-111,119
综述了不同功能碳纳米管传感器(微型碳纳米管气体离子传感器、无线被动碳纳米管气体传感器、碳纳米管化学和力学传感器、碳纳米管阵列生物传感器、碳纳米管温度和风速传感器、碳纳米管神经毒气传感器)的制备、结构特点、性能和发展方向.  相似文献   

6.
张云怀  张怀  肖鹏 《材料导报》2007,21(6):13-15,20
对碳纳米管生物分子修饰的研究引起了科学家极大的兴趣,将碳纳米管应用到生物体系具有重要的价值.首要的是纳入生物体系的碳纳米管具有生物相容性和特殊的识别功能.因此,利用生物分子功能化碳纳米管是将碳纳米管纳入生物体系必须解决的一个关键问题.综述了DNA功能化碳纳米管的最新研究进展,并阐述了DNA功能化碳纳米管在生物传感器、电化学检测等方面的应用.  相似文献   

7.
新型碳纳米管复合物的开发及其在电化学生物传感器中的应用是近年来材料学和分析领域的研究热点.介绍了碳纳米管复合物在电化学生物传感领域的研究发展,重点对碳纳米管与纳米颗粒、聚合物及离子液体复合材料在电化学生物传感中的应用进行了论述.  相似文献   

8.
将碳纳米管与碳纤维混杂掺入水泥基材料制备碳纳米管-碳纤维(CNT-CF)水泥基材料,并研究其温敏和压敏传感特性。结果表明,当碳纳米管掺量较低时(0.5%),碳纳米管能有效提高CNT-CF水泥基材料的温敏和压敏特性;CNT-CF水泥基材料的活化能、温敏系数以及压敏传感线性程度和重复度均随碳纳米管掺量增加而提高;随着碳纳米管掺量继续增加,CNT-CF水泥基材料各项传感性能均有所下降。碳纳米管掺量为0.5%的试样传感特性最优。利用CNT-CF水泥基材料开发水泥基温敏、压敏传感器有一定应用前景。  相似文献   

9.
碳纳米管因其拉曼光谱有明显的应力敏感性而被添加到聚合物材料中作为拉曼力学传感器。介绍了不同种类的碳纳米管及其聚集体对应力的不同响应,另外着重综述了碳纳米管拉曼传感器在检测基体受力情况以及在纤维增强材料界面性能方面的应用。同时也介绍了碳纳米管的功能化对于应力传感效果的影响。  相似文献   

10.
刘勇  孙晓刚  朱正吼  罗军 《材料导报》2005,19(Z2):56-59
阵列式碳纳米管(Aligned Carbon Nanotubes or ANTs)是指碳纳米管垂直于基底生长形成的碳纳米管阵列,在场发射管和生物传感器等领域具有潜在应用价值.介绍了阵列式碳纳米管的主要制备方法和应用.  相似文献   

11.
12.
碳纳米管场发射平面显示器具有工作电压低、功耗低和制造成本低等优势,近年来基于碳纳米管场发射平面显示器的研究与应用研发已成为显示技术领域研究的热点之一,并已取得丰富成果。简要回顾了碳纳米管用于场发射的机理以及用于场发射平面显示器的优势,主要介绍了碳纳米管用于场发射平面显示器研究的一些进展和一些亟待解决的问题,包括碳纳米管阴极薄膜的制备、碳纳米管阴极工作稳定性与寿命的改进以及阴极结构的设计等,并展望了碳纳米管用于场发射平面显示器的发展前景。  相似文献   

13.
Lightweight materials that are both highly compressible and resilient under large cyclic strains can be used in a variety of applications. Carbon nanotubes offer a combination of elasticity, mechanical resilience and low density, and these properties have been exploited in nanotube-based foams and aerogels. However, all nanotube-based foams and aerogels developed so far undergo structural collapse or significant plastic deformation with a reduction in compressive strength when they are subjected to cyclic strain. Here, we show that an inelastic aerogel made of single-walled carbon nanotubes can be transformed into a superelastic material by coating it with between one and five layers of graphene nanoplates. The graphene-coated aerogel exhibits no change in mechanical properties after more than 1?×?10(6) compressive cycles, and its original shape can be recovered quickly after compression release. Moreover, the coating does not affect the structural integrity of the nanotubes or the compressibility and porosity of the nanotube network. The coating also increases Young's modulus and energy storage modulus by a factor of ~6, and the loss modulus by a factor of ~3. We attribute the superelasticity and complete fatigue resistance to the graphene coating strengthening the existing crosslinking points or 'nodes' in the aerogel.  相似文献   

14.
Carbon nanotube-based sensors   总被引:1,自引:0,他引:1  
  相似文献   

15.
碳纳米管及其掺杂氧化物半导体气敏传感器   总被引:2,自引:2,他引:2  
碳纳米管气敏传感器以其工作温度低和最低检出限较低等优点而备受关注,而碳纳米管掺杂氧化物半导体气敏传感器兼备了氧化物半导体气敏传感器和碳纳米管气敏传感器二者的优点,具有灵敏度较高、最低检出限低和工作温度低等特性。综述了这两类传感器的研究进展,介绍了其气敏机理,并对相应存在的问题及今后的发展趋势进行了概述。  相似文献   

16.
Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human–machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors. As a class of 2D inorganic compounds in materials science, MXene has excellent electrical, mechanical, and biological compatibility. MXene-based composites have proven to be promising candidates for flexible tactile sensors due to their excellent stretchability and metallic conductivity. Therefore, great efforts have been devoted to the development of MXene-based composites for flexible sensor applications. In this paper, the controllable preparation and characterization of MXene are introduced. Then, the recent progresses on fabrication strategies, operating mechanisms, and device performance of MXene composite-based flexible tactile sensors, including flexible piezoresistive sensors, capacitive sensors, piezoelectric sensors, triboelectric sensors are reviewed. After that, the applications of MXene material-based flexible electronics in human motion monitoring, healthcare, prosthetics, and artificial intelligence are discussed. Finally, the challenges and perspectives for MXene-based tactile sensors are summarized.  相似文献   

17.
Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next‐generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural‐biomaterial‐derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high‐performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon‐based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.  相似文献   

18.
Carbon nanotubes exhibit many unique intrinsic physical and chemical properties and have been intensively explored for biological and biomedical applications in the past few years. In this comprehensive review, we summarize the main results from our and other groups in this field and clarify that surface functionalization is critical to the behavior of carbon nanotubes in biological systems. Ultrasensitive detection of biological species with carbon nanotubes can be realized after surface passivation to inhibit the non-specific binding of biomolecules on the hydrophobic nanotube surface. Electrical nanosensors based on nanotubes provide a label-free approach to biological detection. Surface-enhanced Raman spectroscopy of carbon nanotubes opens up a method of protein microarray with detection sensitivity down to 1 fmol/L. In vitro and in vivo toxicity studies reveal that highly water soluble and serum stable nanotubes are biocompatible, nontoxic, and potentially useful for biomedical applications. In vivo biodistributions vary with the functionalization and possibly also size of nanotubes, with a tendency to accumulate in the reticuloendothelial system (RES), including the liver and spleen, after intravenous administration. If well functionalized, nanotubes may be excreted mainly through the biliary pathway in feces. Carbon nanotube-based drug delivery has shown promise in various In vitro and in vivo experiments including delivery of small interfering RNA (siRNA), paclitaxel and doxorubicin. Moreover, single-walled carbon nanotubes with various interesting intrinsic optical properties have been used as novel photoluminescence, Raman, and photoacoustic contrast agents for imaging of cells and animals. Further multidisciplinary explorations in this field may bring new opportunities in the realm of biomedicine.   相似文献   

19.
Impact damage, excessive loading, and corrosion have been identified as critical and long-term problems that constantly threaten the integrity and reliability of structural systems (e.g., civil infrastructures, aircrafts, and naval vessels). While a variety of sensing transducers have been proposed for structural health monitoring, most sensors only offer measurement of structural behavior at discrete structural locations. Here, a conformable carbon nanotube-polyelectrolyte sensing skin fabricated via the layer-by-layer technique is proposed to monitor strain and impact damage over spatial areas. Specifically, electrical impedance tomographical (EIT) conductivity mapping techniques are employed to offer two-dimensional damage maps from which damage location and severity can be easily and accurately quantified. This study deposits carbon nanotube-based sensing skins upon metallic structural plates with electrodes installed along the plate boundary. Based on boundary electrical measurements, EIT mapping captures both strain in the underlying substrate as well as damage (e.g., permanent deformation and cracking) introduced using an impact apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号