首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 406 毫秒
1.
API J55套管的膨胀性能分析   总被引:1,自引:0,他引:1  
可膨胀的套管管材是膨胀套管技术的核心技术之一。模拟井眼中的套管膨胀力学环境,对3根国产114.3 mm API J55套管(壁厚6.35 mm)在原始状态和热处理状态下分别进行了径向6.2%及16.5%的膨胀试验,对膨胀前后套管的几何精度、材料相关性能及套管的实物性能进行了检验。发现标准API J55套管在进行幅度为16.5%的径向膨胀后,仍然具有较好的基本性能指标,但同时发现该种套管由于材料性能方面的原因,存在变形困难的问题,还发现套管在膨胀后抗挤强度下降显著。分析结果对于可膨胀套管管材研究具有重要参考价值  相似文献   

2.
为了评估国产55钢级SEW膨胀管的综合力学性能,采用液压式膨胀方法对国产55钢级SEW膨胀管(牌号为BX55)进行了实物膨胀试验,并对膨胀后钢管的尺寸、力学性能、抗内压至失效、抗外压挤毁性能进行了研究。结果显示,BX55液压膨胀11.5%的启动压力为24 MPa,行进压力为22~25 MPa,膨胀过程的压力平稳;膨胀后管材的屈服强度为499 MPa,抗拉强度为562MPa,伸长率29%,母材横向和焊缝中心半尺寸试样0℃夏比冲击功分别为66 J和48 J,抗内压至失效压力超出API SPEC 5CT要求值87%,抗外压挤毁强度高于API RP 5C3标准要求值9%。试验结果表明,国产55钢级SEW膨胀管的综合力学性能优良。  相似文献   

3.
套管膨胀后抗挤毁性能的有限元模拟分析   总被引:1,自引:1,他引:0  
采用弹塑性有限元建立了可膨胀套管膨胀和挤毁过程的力学模型,对N80钢级材料的φ114.3 mm膨胀套管在不同膨胀率条件下膨胀后的挤毁强度进行了计算,给出了采用API 5C3标准和有限元法计算的膨胀后套管挤毁强度以及膨胀后挤毁强度与残余应力之间的关系曲线,发现用API 5C3标准计算膨胀后套管的挤毁强度存在较大缺陷,以及随着套管膨胀后残余应力增加,膨胀后套管的挤毁强度降低.  相似文献   

4.
为了探讨API 5CT规范规定的套管尺寸公差对套管挤毁强度的影响,选取了J55钢级Ф139.7 mm×7.72 mm、L80钢级Ф177.8 mm×10.36 mm和P110钢级Ф244.5 mm×13.84 mm 3种有代表性的油田常用套管,采用有限元法对其在不同外径和壁厚偏差影响下的套管挤毁强度进行了非线性分析、计算,得到了单独考虑外径、壁厚及同时考虑外径和壁厚尺寸偏差下的套管挤毁强度及其变化规律。计算可知,在API 5CT规范规定的尺寸公差范围内,即使套管外径和壁厚的最不利偏差同时出现在同一横截面上,套管的挤毁强度仍然会在API额定值之上,椭圆度对套管挤毁强度的影响大于壁厚不均度的影响,套管圆周上壁厚最薄点决定着套管挤毁强度,壁厚不均度对套管挤毁强度的影响非常小,API给出的大外径套管额定挤毁强度偏保守。对于尺寸公差符合API 5CT规范的套管,其挤毁强度一般会高于API额定值一定幅度。   相似文献   

5.
可膨胀管膨胀性能的好坏是决定膨胀作业能否成功的关键。以APIL80套管为研究对象,进行了套管径向膨胀20.5%和25.5%的膨胀试验,对套管膨胀前后的几何精度和力学性能变化进行了对比研究。试验研究结果表明,膨胀改变了套管的力学性能,使其强度和硬度增加,而塑性降低,但套管在膨胀后仍具有较大的塑性变形空间,在膨胀后的使用中不会出现脆性开裂,同时表明套管膨胀后的相关指标满足API标准,说明L80套管是适合于膨胀的。膨胀试验研究对于可膨胀管的研究开发及制造具有重要指导意义。  相似文献   

6.
分析了API屈服挤毁公式和ISO全管壁屈服挤毁压力公式,认为:API Bulletin 5C3屈服挤毁设计的基本原理是管内壁屈服即失效,实际上,内壁开始屈服时套管还有很大的抗挤余量,对于D/t<15的厚壁及特厚壁套管,若按API提供的这种最小屈服挤毁公式计算,会造成管材浪费或选择套管难的问题;而ISO全管壁屈服挤毁压力公式并非是全管壁屈服公式,可能并不适合所有壁厚段套管强度的计算。为此,根据弹塑性力学理论推导出了任意屈服半径处及全管壁屈服时的挤毁强度公式。通过计算对比可知,对于D/t≤15的厚壁管(API Bulletin 5C3用屈服公式计算套管强度)用von Mises屈服准则计算的套管内壁起始屈服挤毁强度值,要比现行的API Bulletin 5C3屈服挤毁值高15. 45%,而全管壁屈服挤毁值至少要比API Bulletin 5C3屈服挤毁值高出32. 78%。   相似文献   

7.
石油套管用N80钢的研制   总被引:3,自引:0,他引:3  
曲鹏  侯庆平  王树人 《焊管》2009,32(5):15-17
介绍了本溪钢铁公司和海特钢管厂联合研制石油套管用N80钢和ERW套管的情况。对研制的N80钢和ERW套管的化学成分、拉伸性能、冲击韧性、金相组织等进行了试验和分析。经中国石油天然气集团公司管材研究所评定,各项性能指标完全能够满足APISPEC5CT标准的要求。  相似文献   

8.
练章华  杨龙  冯耀荣  杨斌  刘永刚  林凯 《石油机械》2011,39(3):16-18,93,94
选取6根Ф139.7 mm(51/2英寸)J55套管,在膨胀锥角5、8和10°及膨胀速度5和10m/min条件下,对其中5根套管内壁做润滑处理后进行实物膨胀试验研究,另外1根套管只做原始抗挤强度试验。结果表明,磷化润滑处理后的套管与心头间的摩擦因数小于牛油石灰润滑处理后套管与心头间的摩擦因数,改善膨胀套管内壁的润滑条件,可以大大减小膨胀液压力;随着摩擦因数的减小,膨胀后套管的轴向缩短率增大,壁厚减薄幅度减小,有利于提高膨胀后套管的抗挤强度;膨胀前套管的抗外挤毁压力为51.3 MPa,膨胀后套管的平均抗外挤毁压力为28.7 MPa,其抗外挤毁压力降低了44.1%。  相似文献   

9.
套管膨胀性能试验研究   总被引:1,自引:0,他引:1  
利用10mm×30°和10mm×45°倒角的膨胀头对J55和N80两种φ114.3mm(41/2英寸)套管进行了膨胀试验,结果表明,30°倒角膨胀头膨胀套管所需的力小于45°倒角的膨胀头;套管膨胀过程中出现3次峰值载荷;J55套管比N80套管易膨胀,J55套管膨胀后的壁厚减薄率大于N80套管,而长度缩短率小于N80套管。  相似文献   

10.
针对美国石油学会(API)制定的套管强度计算公式中引用的若干个修正系数理论意义不明确的问题,讨论了API套管多个属性参量的分布规律和分布参数.采用基于Monte-Carlo方法的Latin Hypercube随机模拟方法,模拟得出了套管强度的分布规律以及套管几何尺寸和管材力学性能的随机性对套管强度随机性的影响规律.运用可靠性理论建立了套管强度的可靠度计算模型,分析并对比了不同可靠度下的套管强度值,计算得出了API套管强度值的可靠度.研究结果表明,套管属性的随机性越大,套管强度的可靠性越低,API套管弹性挤毁抗挤强度公式的修正系数能够合理地提高其强度可靠性,但应用修正系数后的抗内压强度公式是偏于安全的.  相似文献   

11.
膨胀管技术是21世纪石油钻采行业的核心技术之一,掌握膨胀管在径向膨胀过程中发生永久塑性变形的力学性能变化是膨胀管选材的核心。为此,采用膨胀锥自上而下对J55套管(Φ114.3 mm) 进行了膨胀工艺试验,测定并比较了9.3%的径向膨胀后与膨胀前的力学性能。研究结果揭示了J55套管的膨胀性能:套管的长度减小约4.4%,壁厚减小约6%,不均匀变形程度增加;由于加工硬化,套管的洛氏硬度和抗拉强度增加,而断后伸长率和断面收缩率出现不同程度下降,但均满足API SPEC 5CT标准。断口SEM形貌进一步表明膨胀前后均属于韧性断裂,膨胀后断口上的韧窝小而浅,且分布不均匀,断面较膨胀前的更为平整。该试验成果为膨胀管的材质研究、加工质量控制与工程应用提供了数据支持。  相似文献   

12.
新版的API 5C3—2008标准已经颁布实施,其附录中给出了新的套管挤毁强度计算公式。将其与API 5C3—1994标准中套管挤毁强度计算公式(旧公式)进行了对比分析,并按新公式计算了油田常用套管的抗挤强度值。认为新公式建模更合理,计算结果更精确,且计算结果相对于旧公式的值发生了较大的变化。对于140钢级以下的套管,当套管径厚比大于20时,新公式计算值大于旧公式值;当径厚比小于20时,新公式值小于旧公式值。对140钢级以上的套管,这一变化的径厚比的界限值为22。基于对套管抗挤强度值的新认识,给出了套管柱设计时油田常用套管的合理抗挤安全系数建议值。  相似文献   

13.
从强韧性、显微组织、残余应力、沟槽腐蚀性能、抗氢致开裂性能、抗H2S应力腐蚀性能等方面,分析研究了采用"HFW高频焊接+热张力减径+全管体调质热处理"工艺开发的C90级耐腐蚀HFW套管产品的性能。结果表明,采用该工艺生产的C90级耐腐蚀套管屈服强度、拉伸强度均满足API 5CT标准对C90套管的要求,母材和焊缝的横向冲击功均大于100 J,且冲击功差异不大,残余应力小于80 MPa,并且对焊缝沟槽腐蚀和氢致开裂腐蚀均不敏感;在加载80%和85%名义屈服强度应力下,H2S应力腐蚀720 h后试样不开裂,说明该工艺生产的C90级耐腐蚀HFW套管具有良好的综合力学性能和抗H2S腐蚀性能。  相似文献   

14.
API 5C3未考虑套管的制造工艺及缺陷对套管抗挤强度的影响,已不能准确地预测套管实际抗挤强度。API/ISO工作组针对API 5C3存在的不足,修订了现行API 5C3标准,给出了含制造缺陷的抗挤新模型,大大提高了套管强度计算的科学性。研究中发现,ISO抗挤新模型并不适合所有壁厚段套管强度的计算,为此,在研究和评价ISO新抗挤模型的基础上,提出了考虑制造缺陷的抗挤强度计算新模型。通过与ISO/TG提供的上百个实物挤毁数据对比验证,本文所给出计算式的计算精确度明显好于API 5C3挤毁公式及ISO新模型,为套管强度的设计提供了新的参考依据。  相似文献   

15.
API标准规定的套管钢级、螺纹连接强度已不能满足深井、起深井的要求,由世界各大厂家生产的非API标准蠢管解决了这一难题。文中论述了套管柱失效情况和提高深井、起深井套管柱安全可靠性的途径,提出了选择合适的钢级和高技济的套管;选用有特殊螺纹接头的套管,对特殊螺纹密封结构进行了分析。并对深井、超深井、高压井、定向并、水平开、热采井、有腐蚀性介质的井,如何选用套管和特殊螺纹接头进行了论述。  相似文献   

16.
HFW焊管生产N80Q、P110级套管和油管的工艺开发   总被引:1,自引:1,他引:0  
王涛 《焊管》2009,32(9):35-37
介绍了用HFW焊管生产N80Q、P110级套管和油管的生产工艺。该工艺将低合金高强度HFW焊管经过焊后精整、整体调质处理、焊缝和管体探伤、管端螺纹加工、水压试验、通径试验等工艺,生产出了高钢级成品套管和油管。调质生产线是实现用焊管生产高钢级石油套管、油管的关键。在这个生产工艺中,焊管经过调质热处理后,材料组织发生变化,其强度、韧性等力学性能提高,达到了API SPEC 5CT标准的性能要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号