共查询到18条相似文献,搜索用时 51 毫秒
1.
2.
3.
4.
针对异型零件具有众多复杂的相交特征,加工特征难以自动识别,进而影响其高效、高质量自动编程设计的问题,提出了一种基于图和体分解的加工特征识别方法。首先,以STEP中性文件作为输入,获取异型零件的几何、拓扑信息,以构造其毛坯特征和体积特征;同时,采用布尔减运算得到异型零件的加工体积特征,并将其分解为只含凸边关系的单一特征。然后,设计了一种基于特征面关系的几何特征矩阵(geometric feature matrix, GFM)和拓扑特征矩阵(topological feature matrix, TFM)构建方法,其中GFM侧重描述零件模型中面与面之间的位置关系,TFM侧重描述零件模型中面与面之间相邻的凹凸性,该方法较好地解决了传统属性邻接矩阵(attribute adjacency matrix, AAM)易出现无法准确表达零件加工特征的问题。最后,将异型零件的GFM和TFM与加工特征库进行匹配,以实现其加工特征的识别。在Visual Studio 2019平台中开发基于图和体分解的异型零件加工特征识别系统并开展验证实验。结果表明,所提出的方法能准确识别异型零件的所有加工特征,这可为异型... 相似文献
5.
6.
7.
8.
9.
10.
11.
With the development of Information technology and the popularization of Internet, whenever and wherever possible, people can connect to the Internet optionally. Meanwhile, the security of network traffic is threatened by various of online malicious behaviors. The aim of an intrusion detection system (IDS) is to detect the network behaviors which are diverse and malicious. Since a conventional firewall cannot detect most of the malicious behaviors, such as malicious network traffic or computer abuse, some advanced learning methods are introduced and integrated with intrusion detection approaches in order to improve the performance of detection approaches. However, there are very few related studies focusing on both the effective detection for attacks and the representation for malicious behaviors with graph. In this paper, a novel intrusion detection approach IDBFG (Intrusion Detection Based on Feature Graph) is proposed which first filters normal connections with grid partitions, and then records the patterns of various attacks with a novel graph structure, and the behaviors in accordance with the patterns in graph are detected as intrusion behaviors. The experimental results on KDD-Cup 99 dataset show that IDBFG performs better than SVM (Supprot Vector Machines) and Decision Tree which are trained and tested in original feature space in terms of detection rates, false alarm rates and run time. 相似文献
12.
13.
14.
15.
基于独立分量分析的形状识别 总被引:1,自引:0,他引:1
物体的形状识别是模式识别的重要方向之一,广泛应用于图像分析、机器视觉和目标识别等领域。在介绍利用信号的高阶统计信息的独立分量分析方法基础上,提出了基于独立分量分析的形状识别方法。利用独立分量分析算法提取出图像的独立基,根据待识别图像在独立基上投影系数的差别进行分类识别。仿真实验结果表明,该方法对于形状识别有较高的识别率。 相似文献
16.
17.
针对被检测目标在视角变化和遮挡时较难识别的问题,提出联合利用Gabor特征和视角变换时共有的LIOP特征对目标进行多角度识别的新算法。首先,用4个方向、16个尺度的二维Gabor滤波器组对输入图像进行滤波,得到64组含有方向信息的Gabor特征响应图,进而对相邻尺度和相应位置计算局部响应最大值,得到具有尺度及平移不变的特征向量。其次,通过几何变换算法获得不同视角下的LIOP特征向量。然后,为了降低时间复杂度,通过主成分分析算法对联合特征降维。最后,把降维后的特征向量输入支持向量机(SVM)进行训练学习,得到检测器模型。为了定量评估算法精度和鲁棒性,在Caltech-101和UIUC car两个标准数据库进行测试,实验结果表明,本文在两个标准数据集上的平均识别率分别达到了92.1%和95.4%,能较好检测不同尺度、不同角度的目标。 相似文献