首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
COLD GELATION OF WHEY PROTEIN EMULSIONS   总被引:4,自引:0,他引:4  
Stable and homogeneous emulsion‐filled gels were prepared by cold gelation of whey protein isolate (WPI) emulsions. A suspension of heat‐denatured WPI (soluble WPI aggregates) was mixed with a 40% (w/w) oil‐in‐water emulsion to obtain gels with varying concentrations of WPI aggregates and oil. For emulsions stabilized with native WPI, creaming was observed upon mixing of the emulsion with a suspension of WPI aggregates, likely as a result of depletion flocculation induced by the differences in size between the droplets and aggregates. For emulsions stabilized with soluble WPI aggregates, the obtained filled suspension was stable against creaming, and homogeneous emulsion‐filled gels with varying protein and oil concentrations were obtained. Large deformation properties of the emulsion‐filled cold‐set WPI gels were determined by uniaxial compression. With increasing oil concentration, the fracture stress increases slightly, whereas the fracture strain decreases slightly. Small deformation properties were determined by oscillatory rheology. The storage modulus after 16 h of acidification was taken as a measure of the gel stiffness. Experimental results were in good agreement with predictions according to van der Poel's theory for the effect of oil concentration on the stiffness of filled gels. Especially, the influence of the modulus of the matrix on the effect of the oil droplets was in good agreement with van der Poel's theory.  相似文献   

2.
BACKGROUND: Soy protein, an important efficient emulsifier, is widely used by the food industry for incorporation into milk, yogurts, ice cream, salad dressings, dessert products, etc. The objective of this study was to investigate the rheological and physical properties of soy protein‐stabilised emulsion gels as affected by protein concentration and gelation temperature. RESULTS: The rheological properties and permeability were determined using oscillatory rheometry, permeability and whey separation. The modulus (G′ and G″), fracture stress and fracture strain of acid‐induced emulsion gels after 20 h of glucono‐δ‐lactone addition depended strongly on soy protein concentration and gelation temperature. At increasing soy protein concentrations, acid‐induced emulsion gels had shorter gelation times but higher storage moduli (G′), fracture stresses and strains. Increasing gelation temperature decreased the gelation time, G′, fracture stresses and strains. Permeability and whey separation were significantly affected by the protein concentration and the gelation temperature. A significant positive correlation was observed between whey separation and permeability coefficient in emulsion gels formed at different temperatures. CONCLUSION: The rheological properties and permeability of soy protein‐stabilised emulsion gels were significantly influenced by protein concentration and gelation temperature. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
离子强度和温度对乳清蛋白凝胶的影响   总被引:2,自引:0,他引:2  
王岩  王存堂  蒋继丰  渠磊 《食品科学》2010,31(1):123-126
本实验主要研究凝胶温度和CaCl2 浓度对乳清蛋白冷凝胶的影响。结果表明:较低的凝胶温度和增加CaCl2浓度能够致使乳清蛋白形成清亮的凝胶;在0、10、20℃凝胶温度条件下,增加CaCl2 浓度使得凝胶硬度有所增加;乳清蛋白凝胶的持水性在凝胶温度为0、10℃,CaCl2 浓度为20、40mmol/L 时受到影响;除了0℃ 和20mmol/LCaCl2 条件下,低温能够使乳清蛋白形成较高的凝胶硬度和持水性。凝胶温度和CaCl2 浓度是影响乳清蛋白冷凝胶的关键因素。  相似文献   

4.
Heat Gelation of Oil-in-Water Emulsions Stabilized by Whey Protein   总被引:2,自引:0,他引:2  
The conditions under which a high volume fraction of oil can be trapped in whey protein gels were studied. Oil-in-water emulsions of whey protein and vegetable oil were subjected to heat treatment. Such emulsions, depending on their protein and oil content, on their pH and on the emulsification technique used, gelled or remained liquid. Homogenization was the major factor to achieve gelation and the firmness of heat-induced gels increased with increasing emulsion fineness and homogeneity. Emulsions with a high gelation capacity were characterized by a single droplet family of relatively narrow size distribution and a mean droplet diameter ranging from roughly 300–700 nanometers. The pH range suitable for gelation extended from 3.5–8.0.  相似文献   

5.
Aiqian Ye   《Food chemistry》2008,110(4):946-952
The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (<3%), whereas caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC.  相似文献   

6.
A novel supercritical fluid extrusion (SCFX) process was used to successfully texturize whey protein concentrate (WPC) into a product with cold-setting gel characteristics that was stable over a wide range of temperature. It was further hypothesized that incorporation of texturized WPC (tWPC) within an aqueous phase could improve emulsion stability and enhance the rheological properties of cold, gel-like emulsions. The emulsifying activity and emulsion stability indices of tWPC and its ability to prevent coalescence of oil-in-water (o/w) emulsions were evaluated and compared with the commercial WPC80. The cold, gel-like emulsions were prepared at different oil fractions (φ = 0.20–0.80) by mixing oil with the 20% (w/w) tWPC dispersion at 25 °C and evaluated using a range of rheological techniques. Microscopic structure of cold, gel-like emulsions was also observed by Confocal Laser Scanning Microscope (CLSM). The results revealed that the tWPC showed excellent emulsifying properties compared to the commercial WPC in slowing down emulsion breaking mechanisms such as creaming and coalescence. Very stable with finely dispersed fat droplets, and homogeneous o/w gel-like emulsions could be produced. Steady shear viscosity and complex viscosity were well correlated using the generalized Cox–Merz rule. Emulsions with higher viscosity and elasticity were obtained by raising the oil fraction. Only 4% (w/w) tWPC was needed to emulsify 80% (w/w) oil with long-term storage stability. The emulsion products showed a higher thermal stability upon heating to 85 °C and could be used as an alternative to concentrated o/w emulsions and in food formulations containing heat-sensitive ingredients.  相似文献   

7.
《Food Hydrocolloids》2006,20(2-3):269-276
The heat stability of emulsions (4 wt% corn oil) formed with whey protein isolate (WPI) or extensively hydrolysed whey protein (WPH) products and containing xanthan gum or guar gum was examined after a retort treatment at 121 °C for 16 min. At neutral pH and low ionic strength, emulsions stabilized with both 0.5 and 4 wt% WPI (intact whey protein) were stable against retorting. The amount of β-lactoglobulin (β-lg) at the droplet surface increased during retorting, especially in the emulsion containing 4 wt% protein, whereas the amount of adsorbed α-lactalbumin (α-la) decreased markedly. Addition of xanthan gum or guar gum caused depletion flocculation of the emulsion droplets, but this flocculation did not lead to their aggregation during heating. In contrast, the droplet size of emulsions formed with WPH increased during heat treatment, indicating that coalescence had occurred. The coalescence during heating was enhanced considerably with increasing concentration of polysaccharide in the emulsions, up to 0.12% and 0.2% for xanthan gum and guar gum, respectively; whey peptides in the WPH emulsions formed weaker and looser, mobile interfacial structures than those formed with intact whey proteins. Consequently, the lack of electrostatic and steric repulsion resulted in the coalescence of flocculated droplets during retort treatment. At higher levels of xanthan gum or guar gum addition, the extent of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase.  相似文献   

8.
《Food Hydrocolloids》2007,21(5-6):844-854
The fat droplet cluster structure in acidified and neutral emulsion gels is investigated after storage at fixed temperature or after temperature cycling. Amongst other techniques, the novel non-invasive Spin-echo Small-angle Neutron Scattering (SESANS) technique is applied to probe the structure of emulsion droplet aggregates up to a length scale of ∼10 μm.The SESANS data show that fat droplet clusters in non-cycled emulsions become smaller with increasing homogenisation pressure (next to the droplets themselves getting smaller as well), and that the emulsion gel becomes more homogeneous as a result. Upon temperature-cycling, it is found that the fat droplet clusters increase in size (next to the droplets themselves getting larger as well). The presence of these more lumpy aggregates is not the direct cause of the higher firmness of the emulsion gels, but the rearrangement process itself may promote the partial coalescence that causes an increase in firmness of these emulsion gels upon temperature-cycling.  相似文献   

9.
Isolated wheat protein (IWP) is an acidic deamidated wheat protein. The deamidation process enhances the protein solubility at pHs greater than 6, and therefore its potential ability to act as a food emulsifier. The interfacial properties and the mechanism by which this protein stabilises oil-in-water emulsions were investigated by measuring the protein's absorbed layer thickness on latex particles, its interfacial rheology, and the colloidal and thermal stability of IWP stabilised emulsions. IWP forms a relatively thick interfacial layer of 18 nm upon adsorption onto latex beads, suggesting that the protein adsorbed with the long axis perpendicular to the surface, i.e. end-on, at a full protein coverage. The interfacial rheology measurement showed that IWP formed a relatively weak fluid-like interface. Similar to other protein emulsifiers, the colloidal stability of IWP emulsions is provided largely through electrostatic repulsion. Although IWP emulsions were sensitive to salt induced flocculation, the presence of excess protein in the aqueous phase (e.g. 4 wt%) was able to reduce the effect of salt screening (50 mM CaCl2) on a 25 wt% oil-in-water emulsion completely. The emulsions underwent minimal coalescence when droplets were in close contact, e.g. flocculated, because the interfacial layer of IWP provides a barrier to droplet coalescence, even in high salt environments. IWP emulsions were resistant to thermal treatment with no changes in particle size observed when the emulsions were heated (up to 90 °C for 20 min) in the absence or the presence of 150 mM NaCl. The heat stability of IWP emulsions is thought to arise from the structure of IWP at the interface. A lack of free cysteines combined with few hydrophobic regions meant that there were minimal interactions between protein molecules adsorbed onto the same droplet or on neighbouring droplets. The unique interfacial properties of IWP, e.g. its physical layer thickness and the structure provide enhanced stability for emulsions against coalescence and heating.  相似文献   

10.
Properties of whey protein concentrate stabilised emulsions were modified by protein and emulsion heat treatment (60–90 °C). All liquid emulsions were flocculated and the particle sizes showed bimodal size distributions. The state and surface properties of proteins and coexisting protein/aggregates in the system strongly determined the stability of heat‐modified whey protein concentrate stabilised emulsions. The whey protein particles of 122–342 nm that formed on protein heating enhanced the stability of highly concentrated emulsions. These particles stabilised protein‐heated emulsions in the way that is typical for Pickering emulsions. The emulsions heated at 80 and 90 °C gelled due to the aggregation of the protein‐coated oil droplets.  相似文献   

11.
12.
The influence of chitosan and gum arabic mixtures on the behaviour of o/w emulsions has been investigated at pH = 3.0. The emulsion behaviour, properties and microstructure were found to be greatly dependent on the precise gum arabic to chitosan ratio. Mixing of gum arabic with chitosan leads to the formation of coacervates of a size dependent on their ratio. Incorporation of low gum arabic to chitosan weight ratios into whey protein-coated emulsions causes depletion flocculation and gravity-induced phase separation. Increasing the polysaccharide weight ratio further, a droplet network with a rather high viscosity (at low shear stress) is generated, which prevents or even inhibits phase separation. At even higher gum arabic to chitosan ratios, the emulsion droplets were immobilised into clusters of an insoluble ternary matrix. Although the emulsion droplet charge had the same sign as that of the coacervates, clusters of oil droplets in a ternary matrix were generated. A mechanism to explain the behaviour of the whey protein-stabilised o/w emulsions is described on the basis of confocal and phase contrast microscopic observations, rheological data, zeta potential measurements, particle size analysis and visual assessment of the macroscopic phase separation events.  相似文献   

13.
Heteroaggregated oil‐in‐water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3‐dimensional network at comparably low‐fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ0) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP‐based emulsions (τ0,SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29‐fold (glutaraldehyde) and 2‐fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin‐driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents.  相似文献   

14.
Ferrous bisglycinate aqueous solution was entrapped in the inner phase (W1) of water-in-oil-in-water (W1/O/W2) multiple emulsions. The primary ferrous bisglycinate aqueous solution-in-mineral oil (W1/O) emulsion contained 15% (w/w) ferrous bisglycinate, had a dispersed phase mass fraction of 0.5, and was stabilized with a mixture of Grindsted PGPR 90:Panodan SDK (6:4 ratio) with a total emulsifiers concentration of 5% (w/w). This primary emulsion was re-emulsified in order to prepare W1/O/W2 multiple emulsions, with a dispersed mass fraction of 0.2, and stabilized using protein (whey protein concentrate (WPC)):polysaccharide (gum arabic (GA) or mesquite gum (MG) or low methoxyl pectin (LMP)) complexes (2:1 ratio) in the W2 aqueous phase. The W1/O/W2 multiple emulsion stabilized with WPC:MG (5% w/w total biopolymers concentration) provided smaller droplet sizes (2.05 μm), lower rate of droplet coalescence (7.09 × 10−7 s−1), better protection against ferrous bisglycinate oxidation (29.75% Fe3+) and slower rate of ferrous bisglycinate release from W1 to W2 (KH = 0.69 mg mL−1 min−0.5 in the first 24 h and 0.07 mg mL−1 min−0.5 for the next 19 days of storage time). Better encapsulation efficiencies, enhanced protection against oxidation and slower release rates of ferrous bisglycinate were achieved as the molecular weight of the polysaccharide making up protein:polysaccharide complex was higher. Thus, the factor that probably affected most the overall functionality of multiple emulsions was the thickness of the complex adsorbed around the multiple emulsion oil droplets. These thicknesses determined indirectly by measuring the z-average diameter of the complexes, and that of the WPC:MG (529.4 nm) was the largest.  相似文献   

15.
Whey protein isolate was dispersed at 4% or 8% (w/v) and heated at neutral pH to produce protein polymers. Butter oil, up to 20%, was homogenized in heated whey protein dispersions at pressure ranging from 10 to 120 MPa. Emulsion gelation was induced by acidification with glucono-δ-lactone. Whey protein polymers produced finely dispersed emulsions with fat droplet diameter ranging from 340 to 900 nm. Homogenization pressure was the main factor influencing droplet size. At low fat volume fraction, the emulsions exhibited Newtonian behaviour. As fat content increased, shear thinning behaviour developed as a result of depletion flocculation. Emulsion consistency index increased with protein and fat concentrations. Increasing homogenization pressure had no effect on Newtonian emulsions but promoted flocculation and significantly increased the consistency of high fat emulsions. Protein concentration was the main factor explaining emulsion gel hardness and syneresis. Syneresis decreased with increasing fat content in the gel.  相似文献   

16.
Surface hydrophobicity, solubility, gelation and emulsifying properties of high hydrostatic pressure (HHP)‐treated whey protein were evaluated. HHP treatment of whey protein buffer or salt solutions were performed at 690 MPa and initial ambient temperature for 5, 10, 20 or 30 min. Untreated whey protein was used as a control. The surface hydrophobicity of whey protein in 0.1 M phosphate buffers treated at pH 7.0 increased with an increase in HHP treatment time from 10 to 30 min. HHP treatments of whey protein in salt solutions at pH 7.0 for 5, 10, 20 or 30 min decreased the solubility of whey proteins. A significant correlation was observed between the surface hydrophobicity and solubility of untreated and HHP‐treated whey protein with r = ?0.946. Hardness of HHP‐induced 20, 25 or 30% whey protein gels increased with an increase in HHP treatment time from 5 to 30 min. An increase in the hardness of whey protein gels was observed as whey protein concentration increased. Whey proteins treated in phosphate buffer at pH 5.8 and 690 MPa for 5 min exhibited increased emulsifying activity. Whey proteins treated in phosphate buffer at pH 7.0 and 690 MPa for 10, 20 or 30 min exhibited decreased emulsifying activity. HHP‐treated whey proteins in phosphate buffer at pH 5.8 or 7.0 contributed to an increase in emulsion stability of model oil‐in‐water emulsions. This study demonstrates that HHP treatment of whey protein in phosphate buffer or salt solutions leads to whey protein unfolding observed as increased surface hydrophobicity. Whey proteins treated in phosphate buffers at pH 5.8 and 690 MPa for 5 min may potentially be used to enhance emulsion stability in foods such as salad dressings, sausage and processed cheese.  相似文献   

17.
Composite gels were prepared from 2% myofibrillar protein (MP) with 10% imbedded pre-emulsified plant oils (olive and peanut) of various particle sizes at 0.6 M NaCl, pH 6.2. Dynamic rheological testing upon temperature sweeping (20-70 °C at 2 °C/min) showed substantial increases in G′ (elastic modulus) of MP sols/gels with the addition of emulsions, and the G′ increases were inversely related to the emulsion droplet size. Furthermore, gels containing emulsified olive oil had a greater (P < 0.05) hardness than those containing emulsified peanut oil. Regardless of oil types, MP-coated oil droplets exhibited stronger reinforcement of MP gels than Tween 80-stablized oil droplets; the latter composite gels had considerable syneresis. Light microscopy with paraffin sectioning revealed a stable gel structure when filled with protein-coated oil droplets, compared to gels with Tween 80-treated emulsions that showed coalesced oil droplets. These results suggest that rheological characteristics, hardness, texture, and water-holding capacity of MP gels were influenced by type of oils, the nature of the interfacial membrane, and the size of emulsion droplets.  相似文献   

18.
The storage modulus (G′) and fracture properties of the non-treated and NEM-treated emulsion gels were investigated in the absence and presence of unadsorbed soy protein aggregates (USPA). In the absence of USPA, a decrease in the G′ of emulsion gels was observed after NEM treatment. However, in the presence of USPA, the addition of NEM only slightly decreased the G′ (p < 0.05). For both non-treated and NEM-treated emulsions, a ∼63-folds higher G′ value was obtained after the USPA addition. These results revealed the presence of sulphydryl group – disulfide bond interchange reactions at ambient temperature and under acidic conditions. In the absence of USPA, the sulphydryl group – disulfide bond interchange reactions was the main interactions responsible for the higher G′ values of non-treated emulsion gels, but for the emulsions with USPA presented, the large quantity of non-covalent interactions (e.g. hydrophobic group & hydrogen bonds) is the main interactions responsible for the aggregation and gelation of emulsion droplets. In the presence of USPA, the sulphydryl group – disulfide bond interchange reactions formed in the non-treated emulsion gels did not increase the final G′ but increased the stability of network. A power law relation was observed between the USPA concentration and the final G′, as well as between the oil volume fraction and the fracture stress/strain.  相似文献   

19.
Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w/v) was mixed into an oil-in-water emulsion system (4.4% w/w oil, 0.22% w/w whey protein, pH 4.5). Two separate, identically composed, emulsion systems were prepared by different methods of preparation. The emulsions prepared separately and subsequently mixed with SBP (referred as Mix A) produced significantly larger average particle sizes than the emulsions in which the SBP was homogenized into the emulsion system during emulsion preparation (referred as Mix B). Mix B type emulsions were stable. Enzyme catalyzed oxidative gelation of SBP helped stabilize the emulsions in Mix A. The kinetics of the enzyme catalyzed oxidative gelation of SBP was evaluated by small angle oscillatory measurements for horseradish peroxidase (HRP) (EC 1.11.1.7) and laccase (EC 1.10.3.2) catalysis, respectively. HRP catalyzed gelation rates, determined from the slopes of the increase of elastic modulus (G′) with time, were higher (P < 0.05) than the corresponding laccase catalyzed rates, but the final G′ values were higher for laccase catalyzed gels, regardless of the presence of emulsions or type of emulsion preparation (Mix A or Mix B). For both enzymes, rates of gelation in Mix A were higher (P < 0.05) than in Mix B, and higher stress was needed to break the gels in Mix A than in Mix B at similar enzyme dosage levels. These differences may be related to a lower availability of the feruloyl groups for cross-linking when the SBP was homogenized into the emulsion system during preparation.  相似文献   

20.
ABSTRACT:  The 2 main storage proteins of soy—glycinin (11S) and β-conglycinin (7S)—exhibit unique behaviors during processing, such as gelling, emulsifying, or foaming. The objective of this work was to observe the interactions between soy protein isolates enriched in 7S or 11S and whey protein isolate (WPI) in oil–water emulsion systems. Soy oil emulsion droplets were stabilized by either soy proteins (7S or 11S rich fractions) or whey proteins, and then whey proteins or soy proteins were added to the aqueous phase. Although the emulsifying behavior of these proteins has been studied separately, the effect of the presence of mixed protein systems at interfaces on the bulk properties of the emulsions has yet to be characterized. The particle size distribution and viscosity of the emulsions were measured before and after heating at 80 and 90 °C for 10 min. In addition, SDS-PAGE electrophoresis was carried out to determine if protein adsorption or exchanges at the interface occurred after heating. When WPI was added to soy protein emulsions, gelling occurred with heat treatment at WPI concentrations >2.5%. In addition, whey proteins were found adsorbed at the oil–water interface together with 7S or 11S proteins. When 7S or 11S fractions were added to WPI-stabilized emulsions, no gelation occurred at concentrations up to 2.5% soy protein. In this case also, 7S or 11S formed complexes at the interface with whey proteins during heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号