首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are attempting to develop an autonomous personal robot that has the ability to perform practical tasks in a human living environment by using information derived from sensors. When a robot operates in a human environment, the issue of safety must be considered in regard to its autonomous movement. Thus, robots absolutely require systems that can recognize the external world and perform correct driving control. We have thus developed a navigation system for an autonomous robot. The system requires only image data captured by an ocellus CCD camera. In this system, we allow the robot to search for obstacles present on the floor. Then, the robot obtains distance recognition necessary for evasion of the object, including data of the obstacle’s width, height, and depth by calculating the angles of images taken by the CCD camera. We applied the system to a robot in an indoor environment and evaluated its performance, and we consider the resulting problems in the discussion of our experimental results. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

2.
视觉导航作为一种重要的机器人导航方式正日益受到人们的关注,为了解决目前采用视觉导航存在的算法设计复杂、导航性能差等问题,提出一种新的室内移动机器人视觉导航系统设计方案。首先阐述了该导航新方法的设计思想,然后介绍了采用该方法的导航系统的整体结构设计。利用放置在室内固定位置的摄像机采集室内环境的视频图像,设计了实时图像分析算法实现障碍物躲避、机器人位置跟踪等功能,为机器人的行走提供导航依据,同时通过无线通信的方式发送控制指令,实现对室内移动机器人的行走过程导航控制。  相似文献   

3.
针对室内环境下的机器人场景识别问题,重点研究了场景分类策略的自主性、实时性和准确性,提出了一种语义建图方法.映射深度信息构建二维栅格地图,自主规划场景识别路径;基于卷积网络建立场景分类模型,实时识别脱离特定训练;利用贝叶斯框架融合先验知识,修正了错误分类并完成语义建图.实验结果表明:机器人能够进行全局自主探索,实时判断场景类别,并创建满足要求的语义地图.同时,实际路径规划中,机器人可以根据语义信息改善导航行为,验证了方法的可行性.  相似文献   

4.
5.
In the current article, we address the problem of constructing radiofrequency identification (RFID)-augmented environments for mobile robots and the issues related to creating user interfaces for efficient remote navigation with a mobile robot in such environments. First, we describe an RFID-based positioning and obstacle identification solution for remotely controlled mobile robots in indoor environments. In the robot system, an architecture specifically developed by the authors for remotely controlled robotic systems was tested in practice. Second, using the developed system, three techniques for displaying information about the position and movements of a remote robot to the user were compared. The experimental visualization techniques displayed the position of the robot on an indoor floor plan augmented with (1) a video view from a camera attached to the robot, (2) display of nearby obstacles (identified using RFID technology) on the floor plan, and (3) both features. In the experiment, test subjects controlled the mobile robot through predetermined routes as quickly as possible avoiding collisions. The results suggest that the developed RFID-based environment and the remote control system can be used for efficient control of mobile robots. The results from the comparison of the visualization techniques showed that the technique without a camera view (2) was the fastest, and the number of steering motions made was smallest using this technique, but it also had the highest need for physical human interventions. The technique with both additional features (3) was subjectively preferred by the users. The similarities and differences between the current results and those found in the literature are discussed.  相似文献   

6.
基于多传感器的家庭服务机器人局部导航方法研究   总被引:1,自引:2,他引:1  
本文提出了一种基于多传感器的家庭服务机器人局部导航方法。首先,采用单个摄像头获取居室内障碍物的图像信息,利用超声波传感器和红外线传感器探测障碍物的距离信息。然后,据此计算在机器人运动方向上障碍物的遮挡空间或者多个障碍物之间的实际距离,再根据机器人自身的大小计算避开障碍物应该转动的方向及角度,从而实现居室内的自主导航。最后,仿真实验结果证明了该方法的有效性。  相似文献   

7.
针对室内光照多变对机器视觉带来的不良影响所造成的室内机器人定位难的问题,提出了一种基于监督的室内导航模型。将鱼眼相机固定在室内房顶的中心位置,并且进行多次拍照,拍照后的图片经过图像处理,即可以完成获取整个地图,以及可行驶区域的人工标定。以屋顶固定参照物灯管为中心,结合位于机器人上的移动设备在不同位置向房顶参照物拍摄的图像数据和实际坐标位置,组成了投影轮廓数据库。根据在移动过程中机器人上的移动设备对房顶参照物进行拍摄,并与数据库匹配,实现了当前机器人的位置信息的获取。经测试,本方法在中低精度下具有一定的可行性,并且具有速度快的优点。本次研究实现了在精度要求不高情况下室内的监督导航。  相似文献   

8.
目的 SLAM(simultaneous localization and mapping)是移动机器人在未知环境进行探索、感知和导航的关键技术。激光SLAM测量精确,便于机器人导航和路径规划,但缺乏语义信息。而视觉SLAM的图像能提供丰富的语义信息,特征区分度更高,但其构建的地图不能直接用于路径规划和导航。为了实现移动机器人构建语义地图并在地图上进行路径规划,本文提出一种语义栅格建图方法。方法 建立可同步获取激光和语义数据的激光-相机系统,将采集的激光分割数据与目标检测算法获得的物体包围盒进行匹配,得到各物体对应的语义激光分割数据。将连续多帧语义激光分割数据同步融入占据栅格地图。对具有不同语义类别的栅格进行聚类,得到标注物体类别和轮廓的语义栅格地图。此外,针对语义栅格地图发布导航任务,利用路径搜索算法进行路径规划,并对其进行改进。结果 在实验室走廊和办公室分别进行了语义栅格建图的实验,并与原始栅格地图进行了比较。在语义栅格地图的基础上进行了路径规划,并采用了语义赋权算法对易移动物体的路径进行对比。结论 多种环境下的实验表明本文方法能获得与真实环境一致性较高、标注环境中物体类别和轮廓的语义栅格地图,且实验硬件结构简单、成本低、性能良好,适用于智能化机器人的导航和路径规划。  相似文献   

9.
Robust topological navigation strategy for omnidirectional mobile robot using an omnidirectional camera is described. The navigation system is composed of on-line and off-line stages. During the off-line learning stage, the robot performs paths based on motion model about omnidirectional motion structure and records a set of ordered key images from omnidirectional camera. From this sequence a topological map is built based on the probabilistic technique and the loop closure detection algorithm, which can deal with the perceptual aliasing problem in mapping process. Each topological node provides a set of omnidirectional images characterized by geometrical affine and scale invariant keypoints combined with GPU implementation. Given a topological node as a target, the robot navigation mission is a concatenation of topological node subsets. In the on-line navigation stage, the robot hierarchical localizes itself to the most likely node through the robust probability distribution global localization algorithm, and estimates the relative robot pose in topological node with an effective solution to the classical five-point relative pose estimation algorithm. Then the robot is controlled by a vision based control law adapted to omnidirectional cameras to follow the visual path. Experiment results carried out with a real robot in an indoor environment show the performance of the proposed method.  相似文献   

10.
11.
Mobile robots are generally equipped with proprioceptive motion sensors such as odometers and inertial sensors. These sensors are used for dead-reckoning navigation in an indoor environment where GPS is not available. However, this dead-reckoning scheme is susceptible to drift error in position and heading. This study proposes using grid line patterns which are often found on the surface of floors or ceilings in an indoor environment to obtain pose (i.e., position and orientation) fix information without additional external position information by artificial beacons or landmarks. The grid lines can provide relative pose information of a robot with respect to the grid structure and thus can be used to correct the pose estimation errors. However, grid line patterns are repetitive in nature, which leads to difficulties in estimating its configuration and structure using conventional Gaussian filtering that represent the system uncertainty using a unimodal function (e.g., Kalman filter). In this study, a probabilistic sensor model to deal with multiple hypotheses is employed and an online navigation filter is designed in the framework of particle filtering. To demonstrate the performance of the proposed approach, an experiment was performed in an indoor environment using a wheeled mobile robot, and the results are presented.  相似文献   

12.
The ability of autonomous navigation of the humanoid robot under unknown environment is very important to real-life applications. EKF-SLAM based on the camera recognition and laser detection for humanoid robot NAO is presented in this paper. Camera recognition is used to recognize if the object is a landmark. Because the computational resources needed for the feature-based position estimation are quite expensive, the laser instead of the camera provides the position of the landmark. A fractional order proportional-integral (PI) controller is designed to reduce the derivation of the NAO robot from the desired path during autonomous navigation. Experiments show that the proposed method is valid and reliable for autonomous navigation of the NAO robot under unknown environment.  相似文献   

13.
We present a technique for mobile robot exploration in unknown indoor environments using only a single forward-facing camera. Rather than processing all the data, the method intermittently examines only small 32×24 downsampled grayscale images. We show that for the task of indoor exploration the visual information is highly redundant, allowing successful navigation even using only a small fraction of the available data. The method keeps the robot centered in the corridor by estimating two state parameters: the orientation within the corridor, and the distance to the end of the corridor. The orientation is determined by combining the results of five complementary measures, while the estimated distance to the end combines the results of three complementary measures. These measures, which are predominantly information-theoretic, are analyzed independently, and the combined system is tested in several unknown corridor buildings exhibiting a wide variety of appearances, showing the sufficiency of low-resolution visual information for mobile robot exploration. Because the algorithm discards such a large percentage of the pixels both spatially and temporally, processing occurs at an average of 1000 frames per second, thus freeing the processor for other concurrent tasks.  相似文献   

14.
15.
基于分布式控制系统的轮式智能机器人研究   总被引:5,自引:5,他引:5  
语音处理、图像处理和定位导航是智能机器人研究的核心内容。介绍了分布式控制系统和CAN总线的概念和特性,提出了一种用于智能机器人的分布式控制系统结构,对基于该控制系统的智能机器人的体系结构、导航与控制、环境感知进行了研究,着重阐述了语音识别和图像识别功能的实现方案。  相似文献   

16.
Autonomous and mobile robots are being expected to provide various services in human living environments. However, many problems remain to be solved in the development of autonomous robots that can work like humans. When a robot moves, it is important that it be able to have self-localization abilities and recognize obstacles. For a human, the present location can be correctly checked through a comparison between memorized information assuming, it is correct, and the present situation. In addition, the distance to an object and the perception of its size can be estimated by a sense of distance based on memory or experience. Therefore, the environment for robotic activity assumed in this study was a finite-space such as a family room, an office, or a hospital room. Because an accurate estimation of position is important to the success of a robot, we have developed a navigation system with self-localization ability which uses only a CCD camera that can detect whether the robot is moving accurately in a room or corridor. This article describes how this system has been implemented and tested with our developed robot.  相似文献   

17.
针对移动机器人视觉导航中路径识别和路径跟踪问题,采用S3C2440嵌入式处理器处理摄像头传感器采集的路径环境信息,实现移动机器人在有引导路径的情况下自主导航。首先,用小波分析的方法进行图像增强和滤波,数学形态学反复开关滤波去除路面上的杂质,其次,针对单路径和交叉引导路径分别采用基于阈值化和形态学方法提取中心点,最后,加权最小二乘法计算导航参数。实验结果表明,该导航算法具有较好的实时性和准确的控制精度,能够满足机器人视觉导航的需要。  相似文献   

18.
This paper presents a new approach to search for a gas/odor source using an autonomous mobile robot. The robot is equipped with a CMOS camera, gas sensors, and airflow sensors. When no gas is present, the robot looks for a salient object in the camera image. The robot approaches any object found in the field of view, and checks it with the gas sensors to see if the object is releasing gas. On the other hand, if the robot detects the presence of gas while wandering around the area, it turns toward the direction of the wind that carries the gas. The robot then looks for any visible object in that direction. These navigation strategies are implemented into the robot under the framework of the behavior-based subsumption architecture. Experimental results on the search for a leaking bottle in an indoor environment are presented to demonstrate the validity of the navigation strategies.  相似文献   

19.
An important competence for a mobile robot system is the ability to localize and perform context interpretation. This is required to perform basic navigation and to facilitate local specific services. Recent advances in vision have made this modality a viable alternative to the traditional range sensors, and visual place recognition algorithms emerged as a useful and widely applied tool for obtaining information about robot’s position. Several place recognition methods have been proposed using vision alone or combined with sonar and/or laser. This research calls for standard benchmark datasets for development, evaluation and comparison of solutions. To this end, this paper presents two carefully designed and annotated image databases augmented with an experimental procedure and extensive baseline evaluation. The databases were gathered in an uncontrolled indoor office environment using two mobile robots and a standard camera. The acquisition spanned across a time range of several months and different illumination and weather conditions. Thus, the databases are very well suited for evaluating the robustness of algorithms with respect to a broad range of variations, often occurring in real-world settings. We thoroughly assessed the databases with a purely appearance-based place recognition method based on support vector machines and two types of rich visual features (global and local).  相似文献   

20.
The navigation problem for a mobile robot in indoor environment is considered. A camera, rigidly attached to the object and observing markers placed on the ceiling, is the main source of navigation data. Additional data are provided by odometry devices and is processed by an algorithm based on approximate integration of the equations of nonholonomic constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号