首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-stage replication technique (positive replica) is shown to be suitable for transmission electron microscopy (TEM) examination of carbon nanotubes (CNTs) and other one-dimensional nanostructures in their longitudinal direction. This method enables handling the fragile nanostructures, is fast and simple and allows to study the growth mechanism of nanofeatures, including the early stages of their growth. CNTs may also be examined when the growth layers are very thin, and even when only a few nanotubes are on a substrate. Replicas can be taken from various substrate shapes covered with nanostructures and from minute or specifically selected areas of the substrates. CNTs extracted by the replica are not disturbed, and their nanostructures are preserved. It is demonstrated that using positive replicas, HRTEM images from the nanosized carbon forms can also be obtained.  相似文献   

2.
Fabrication of systems in which Si nanoparticles are embedded in a thin silica layer is today mature for non-volatile memory and opto-electronics applications. The control of the different parameters (position, size and density) of the nanoparticles population is a key point to optimize the properties of such systems. A review of dedicated transmission electron microscopy (TEM) methods, which can be used to measure these parameters, is presented with an emphasis on those relying on electron energy-loss spectroscopy (EELS). Defocused bright-field imaging can be used in order to determine topographic information of a whole assembly of nanoparticles, but it is not efficient for looking at individual nanoparticles. High-resolution electron imaging or dark-field imaging can be of help in the case of crystalline particles but they always provide underestimated values of the nanocrystals population. EELS imaging in the low-energy-loss domain around the Si plasmon peak, which gives rise to strong signals, is the only way to visualize all Si nanoparticles within a silica film and to perform reliable size and density measurements. Two complementary types of experiments are investigated and discussed more extensively: direct imaging with a transmission electron microscope equipped with an imaging filter (EFTEM) and indirect imaging from spectrum-imaging data acquired with a scanning transmission electron microscope equipped with a spectrometer (STEM-PEELS). The direct image (EFTEM) and indirect set of spectra (STEM-PEELS) are processed in order to deliver images where the contribution of the silica matrix is minimized. The contrast of the resulting images can be enhanced with adapted numerical filters for further morphometric analysis. The two methods give equivalent results, with an easier access for EFTEM and the possibility of a more detailed study of the EELS signatures in the case of STEM-PEELS. Irradiation damage in such systems is also discussed.  相似文献   

3.
In this work, we studied the correlation of the orientation of stacked aragonite platelets of Haliotis laevigata nacre, using selected area diffraction (SAD) in transmission electron microscopy (TEM). From the position of the center of Laue circle (COLC) within the diffraction patterns the tilt angles of the investigated platelets relatively to a reference platelet (oriented in zone axis) are determined. The strong correlation of the platelets supports the existence of mineral bridges, which connect the stacked platelets and enable a transfer of the platelet orientation during growth. Electron tomography and subsequent reconstruction of the obtained data yield information about the shape of the mineral bridges. The crystalline structure of the material within the mineral bridges was investigated by high resolution TEM (HRTEM).  相似文献   

4.
The resolution in transmission electron microscopy (TEM) has reached values as low as 0.08 nm. However, these values are not accessible for very small objects in the size range of a few nanometers or lower, as they have to be placed on some support, which contributes to the overall electron-scattering signal, thereby blurring the contrast. Here, we report on the use of nanosheets made from cross-linked aromatic self-assembled monolayers as TEM sample supports. When transferred onto a copper grid, a single 1.6-nm-thick nanosheet can cover the grid and is free standing within the micron-sized openings. Despite its thinness, the sheet is stable under the impact of the electron beam. Micrographs taken from nanoclusters onto these nanosheets show highly increased contrast in comparison to the images taken from amorphous carbon supports. In scanning transmission electron microscopy with nanosheet support, a size analysis of sub-nanometer Au clusters was performed and single Au atoms were resolved.  相似文献   

5.
We used vapor-liquid-solid (VLS) methods to synthesize discrete single-element semiconductor nanowires and multicomposition nanowire heterostructures, and then characterized their structure and composition using high-resolution electron microscopy (HRTEM) and analytical electron microscopy techniques. Imaging nanowires requires the modification of the established HRTEM imaging procedures for bulk material to take into consideration the effects of finite nanowire width and thickness. We show that high-resolution atomic structure images of nanowires less than 6 nm in thickness have lattice "streaking" due to the finite crystal lattice in two dimensions of the nanowire structure. Diffraction pattern analysis of nanowires must also consider the effects of a finite structure producing a large reciprocal space function, and we demonstrate that the classically forbidden 1/3 [422] reflections are present in the [111] zone axis orientation of silicon nanowires due to the finite thickness and lattice plane edge effects that allow incomplete diffracted beam cancellation. If the operating conditions are not carefully considered, we found that HRTEM image delocalization becomes apparent when employing a field emission transmission electron microscope (TEM) to image nanowires and such effects have been shown to produce images of the silicon lattice structure outside of the nanowire itself. We show that pseudo low-dose imaging methods are effective in reducing nanowire structure degradation caused by electron beam irradiation. We also show that scanning TEM (STEM) with energy dispersive X-ray microanalysis (EDS) is critical in the examination of multicomponent nanowire heterostructures.  相似文献   

6.
An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.  相似文献   

7.
Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.  相似文献   

8.
We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.  相似文献   

9.
Studying the structure of nanoparticles as a function of their size requires a correlation between the image and the diffraction pattern of single nanoparticles. Nanobeam diffraction technique is generally used but requires long and tedious TEM investigations, particularly when nanoparticles are randomly oriented on an amorphous substrate. We bring a new development to this structural study by controlling the nanoprobe of the Bright and Dark Field STEM (BF/DF STEM) modes of the TEM. The particularity of our experiment is to make the STEM nanoprobe parallel (probe size 1 nm and convergence angle <1 mrad) using a fine tuning of the focal lengths of the microscope illumination lenses. The accurate control of the beam position offered by this technique allowed us to obtain diffraction patterns of many single nanoparticles selected in the digital STEM image. By means of this technique, we demonstrate size effects on the order-disorder transition temperature in CoPt nanoparticles when their size is smaller than 3 nm.  相似文献   

10.
A Hastelloy alloy was irradiated with 10 MeV electrons at 650 degrees C for 700 h to a total dose of 2 x 10(-3) displacements per atom (dpa). The microstructure of irradiated and non-irradiated specimens of this alloy were investigated by transmission electron microscopy (TEM). The non-irradiated specimens were analyzed by 3-D atom probe tomography (APT) in a local-electrode atom-probe (LEAP). TEM analysis before the irradiation detects small precipitates with a mean diameter of 22 nm, which are coherent with the FCC matrix. The number density of these precipitates is approximately 7 x 10(18) m(-3). Electron diffraction patterns from these precipitates exhibit superlattice reflections corresponding to the L1(2) ordered structure. The chemical composition of the precipitates, as measured by APT, is around 75 at% Ni with additions of Al, Ti and Mo. After electron irradiation, small precipitates with an irregular morphology are observed. The number density of these new precipitates about 10(20) m(-3) is greater than that of the L1(2) ordered precipitates before irradiation. The L1(2) superlattice reflections disappear completely, instead diffuse diffraction spots are observed at 1(1/2)0(FCC), which is attributed to compositional short-range order (SRO). The results are discussed with respect to the influence of the electron irradiation on the morphology and structure of the ordered precipitates.  相似文献   

11.
Hydroxyapatite (HAP) obtained from aqueous solutions under different conditions has been examined by high-resolution transmission electron microscopy (HRTEM) and electron diffraction, including selected-area electron diffraction (SAED) and microdiffraction. A Philips CM300 field-emission gun electron microscope with a Schottky W/ZrO field-emission tip and a spherical aberration constant of 0.65 mm was used at 300 kV. The HAP crystals had different sizes, ranging from a few nanometres to a few micrometres. Single-crystal diffraction patterns have been obtained from the largest microcrystals using the conventional SAED technique. Assemblies of nanoparticles gave only broad diffuse rings. Nevertheless, microdiffraction with electron microprobes 3.5–10 nm in diameter clearly indicated the crystalline character of the nanoparticles in these assemblies. Experimental HRTEM images, Fourier transforms and calculated images exhibited the fine structure of the HAP crystals.  相似文献   

12.
Through focus series of images are collected from MgO nano-cube crystals in the transmission electron microscope (TEM). The experimental data is used to solve the transport of intensity equation (TIE) to retrieve phase maps, which portray the morphology of the cubes and are quantified by the mean inner potential V(0). Particular attention is given to the practical difficulties associated with TIE phase retrieval of non-conducting polyhedron particles.  相似文献   

13.
Phase retrieval, in principle, can be performed in a transmission electron microscope (TEM) using arbitrary aberrations of electron waves; provided that the aberrations are well-characterised and known. For example, the transport of intensity equation (TIE) can be used to infer the phase from a through-focus series of images. In this work an "astigmatic intensity equation" (AIE) is considered, which relates phase gradients to intensity variations caused by TEM objective lens focus and astigmatism variations. Within the paraxial approximation, it is shown that an exact solution of the AIE for the phase can be obtained using efficient Fourier transform methods. Experimental requirements for using the AIE are the measurement of a through-focus derivative and another intensity derivative, which is taken with respect to objective lens astigmatism variation. Two quasi-experimental investigations are conducted to test the validity of the solution.  相似文献   

14.
A practical, offline method for experimental detection and correction for projector lens distortion in the transmission electron microscope (TEM) operating in high-resolution (HR) and selected area electron diffraction (SAED) modes is described. Typical TEM works show that, in the simplest case, the distortion transforms on the recording device, which would be a circle into an ellipse. The first goal of the procedure described here is to determine the elongation and orientation of the ellipse. The second goal is to correct for the distortion using an ordinary graphic program. The same experimental data set may also be used to determine the actual microscope magnification and the rotation between SAED patterns and HR images. The procedure may be helpful in several quantitative applications of electron diffraction and HR imaging, for instance while performing accurate lattice parameter determination, or while determining possible metrical deviations (cell edges and angles) from a given symmetry.  相似文献   

15.
Klenov DO  Stemmer S 《Ultramicroscopy》2006,106(10):889-901
This paper reports on a study of the contributions to the image contrast of high-angle annular dark field (HAADF) images acquired in scanning transmission electron microscopy. Experimental HAADF images were obtained from a model system consisting of an epitaxial perovskite PbTiO3 film grown on a SrTiO3 single crystal. This sample allowed for the study of the intensities of a wide range of atomic numbers. The main objective of the paper was to quantify the influence of TEM foil thickness on the image contrast, but the effects of the annular detector inner angle and the probe forming lens focus were also studied. Sample thicknesses ranging from approximately 10 nm to more than 400 nm were investigated. The image contrast was relatively insensitive to changes in inner angle. The main impact of sample thickness was a rapid increase in a background intensity that contributed equally to the intensities of the atomic columns and the channels between them. The background intensity and its increase with thickness reflected the average atomic number of the crystal. Subtraction of the background intensity allowed for a quantitative interpretation of image contrast in terms of atomic numbers and comparison with multislice image simulations. The consequences for the analysis of interfaces in terms of atom column occupancies are discussed.  相似文献   

16.
Convergent beam electron diffraction is used to study the effect of the sample bending on diffracted intensities as observed in transmission electron microscopy (TEM). Studied samples are made of thin strained semiconductor Ga(1-)(x)In(x)As epitaxial layers grown on a GaAs substrate and observed in plan view. Strong variations of the diffracted intensities are observed depending on the thinning process used for TEM foil preparation. For chemically thinned samples, strong bending of the substrate occurs, inducing modifications of both kinematical and dynamical Bragg lines. For mechanically thinned samples, bending of the substrate is negligible. Kinematical lines are unaffected whereas dynamical lines have slightly asymmetric intensities. We analyse these effects using finite element modelling to calculate the sample strain coupled with dynamical multibeam simulations for calculating the diffracted intensities. Our results correctly reproduce the qualitative features of experimental patterns, clearly demonstrating that inhomogeneous displacement fields along the electron beam within the substrate are responsible for the observed intensity modifications.  相似文献   

17.
Nanoparticles’ morphology is a key parameter in the understanding of their thermodynamical, optical, magnetic and catalytic properties. In general, nanoparticles, observed in transmission electron microscopy (TEM), are viewed in projection so that the determination of their thickness (along the projection direction) with respect to their projected lateral size is highly questionable. To date, the widely used methods to measure nanoparticles thickness in a transmission electron microscope are to use cross-section images or focal series in high-resolution transmission electron microscopy imaging (HRTEM “slicing”). In this paper, we compare the focal series method with the electron tomography method to show that both techniques yield similar particle thickness in a range of size from 1 to 5 nm, but the electron tomography method provides better statistics since more particles can be analyzed at one time. For this purpose, we have compared, on the same samples, the nanoparticles thickness measurements obtained from focal series with the ones determined from cross-section profiles of tomograms (tomogram slicing) perpendicular to the plane of the substrate supporting the nanoparticles. The methodology is finally applied to the comparison of CoPt nanoparticles annealed ex situ at two different temperatures to illustrate the accuracy of the techniques in detecting small particle thickness changes.  相似文献   

18.
Kim T  Kim S  Olson E  Zuo JM 《Ultramicroscopy》2008,108(7):613-618
We present the design and operation of a transmission electron microscopy (TEM)-compatible carbon nanotube (CNT) field-effect transistor (FET). The device is configured with microfabricated slits, which allows direct observation of CNTs in a FET using TEM and measurement of electrical transport while inside the TEM. As demonstrations of the device architecture, two examples are presented. The first example is an in situ electrical transport measurement of a bundle of carbon nanotubes. The second example is a study of electron beam radiation effect on CNT bundles using a 200 keV electron beam. In situ electrical transport measurement during the beam irradiation shows a signature of wall- or tube-breakdown. Stepwise current drops were observed when a high intensity electron beam was used to cut individual CNT bundles in a device with multiple bundles.  相似文献   

19.
We report a new sample preparation method that allows the direct transmission electron microscopy evaluation of the architectural characteristics of biomolecules entrapped in gel matrices. We demonstrate that this sample preparation technique can be used for the identification and ultrastructural characterization of liposomes, collagen I and collagen III embedded in gel matrices, and has the potential to be useful for transmission electron microscopy (TEM) characterization of other biomolecule-gel matrix systems.  相似文献   

20.
It is shown how size distributions of arbitrarily oriented, convex, non-overlapping particles extracted from conventional transmission electron microscopy (TEM) images may be determined by a variation of the Schwartz-Saltykov method. In TEM, particles cut at the surfaces have diminished projections, which alter the observed size distribution. We represent this distribution as a vector and multiply it with the inverse of a matrix comprising thickness-dependent Scheil or Schwartz-Saltykov terms. The result is a corrected size distribution of the projections of uncut particles. It is shown how the real (3D) distribution may be estimated when particle shape is considered. Computer code to generate the matrix is given. A log-normal distribution of spheres and a real distribution of pill-box-shaped dispersoids in an Al-Mg-Si alloy are given as examples. The errors are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号