首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The behavior of granular materials is very complex in nature and depends on particle shape, stress path, fabric, density, particle size distribution, amongst others. This paper presents a study of the effect of particle geometry (aspect ratio) on the mechanical behaviour of granular materials using the discrete element method (DEM). This study discusses 3D DEM simulations of conventional triaxial and true triaxial tests. The numerical experiments employ samples with different particle aspect ratios and a unique particle size distribution (PSD). Test results show that both particle aspect ratio (AR) and intermediate stress ratio \((b=({\upsigma }_{2}'-{\upsigma }_{3}')/({\upsigma }_{1}'-{\upsigma }_{3}'))\) affect the macro- and micro-scale responses. At the macro-scale, the shear strength decreases with an increase in both aspect ratio and intermediate stress ratio b values. At the micro-scale level, the fabric evolution is also affected by both AR and b. The results from DEM analyses qualitatively agree with available experimental data. The critical state behaviour and failure states are also discussed. It is observed that the position of the critical state loci in the compression \((e-p')\) space is only slightly affected by aspect ratio (AR) while the critical stress ratio is dependent on both AR and b. It is also demonstrated that the influence of the aspect ratio and the intermediate stress can be captured by micro-scale fabric evolutions that can be well understood within the framework of existing critical state theories. It is also found that for a given stress path, a unique critical state fabric norm is dependent on the particle shape but is independent of critical state void ratio.  相似文献   

2.
This paper presents an investigation into the effects of particle-size distribution on the critical state behavior of granular materials using discrete element method (DEM) simulations on both spherical and non-spherical particle assemblies. A series of triaxial test DEM simulations examine the influence of particle-size distribution (PSD) and particle shape, which were independently assessed in the analyses presented. Samples were composed of particles with varying shapes characterized by overall regularity (OR) and different PSDs. The samples were subjected to the axial compression through different loading schemes: constant volume, constant mean effective stress, and constant lateral stress. All samples were sheared to large strains to ensure that a critical state was reached. Both the macroscopic and microscopic behaviors in these tests are discussed here within the framework of the anisotropic critical state theory. It is shown that both OR and PSD may affect the response of the granular assemblies in terms of the stress–strain relations, dilatancy, and critical state behaviors. For a given PSD, both the shear strength and fabric norm decrease with an increase in OR. The critical state angle of shearing resistance is highly dependent on particle shape. In terms of PSD, uniformly distributed assemblies mobilize higher shear strength and experience more dilative responses than specimens with a greater variation of particle sizes. The position of the critical state line in the e–p′ space is also affected by PSD. However, the effects of PSD on critical strength and evolution of fabric are negligible. These findings highlight the importance of particle shape and PSD that should be included in the development of constitutive models for granular materials.  相似文献   

3.
Considering the different hydration processes of concrete without accelerator, sprayed concrete with low-alkali accelerator not only presents short setting times and high early-age mechanical properties but also yields different hydration products. This study presents an analysis of the mechanical properties of concrete with and without accelerator and sprayed concrete with three water–binder (w/b) ratios and four dosages of fly ash (FA) after different curing ages. It also examines the setting time, mineral composition, thermogravimetric–differential scanning calorimetry curves and microscopic images of cement pastes with different accelerator amounts. Furthermore, the setting time and microstructure of accelerated sprayed concrete with different w/b ratios and FA contents are examined. Results show that the retarded action of gypsum disappears in the accelerated cement–accelerator–water system. C3A is quickly hydrated to form calcium aluminate hydrate (CAH) crystals, and a mesh structure is formed by ettringite, albite and CAH. A large amount of hydration heat improves the hydration rate of the cement clinker mineral and the resulting density, thereby improving mechanical properties at early curing ages. The setting times of the pastes increase with increasing w/b ratio and FA dosage. Thus, the hydration level, microstructure and morphology of the hydration products also change. Models of mechanical properties as functions of w/b, FA and curing age, as well as the relationship between compressive strength and splitting tensile strength, are established.  相似文献   

4.
Saturated and unsaturated sand and soil column experiments were conducted to study the complex interaction between the effects of biological and hydrological factors on the transport of bacteria through a porous medium. These experiments were conducted with continuous input of bacteria and substrate at the inlet to reflect the groundwater contamination caused by leaking septic tanks and leach pits. Experiments were conducted with metabolically active and inactive Escherichia coli. Cell surface characteristics and batch experimental data for bacterial attachment were correlated with the transport behaviour in continuous column studies. Normalized breakthrough concentration for metabolically inactive cells (C/C 0 = 0.74 in sand) was higher than that for active cells (C/C 0 = 0.68 in sand) owing to change in cell surface characteristics. A similar trend was observed in the case of transport through soil columns. There was an increase of 29.5% in the peak C/C 0 value at the outlet when the flow velocity was increased from 0.0535 cm/h (C/C 0 = 0.61) to 0.214 cm/h (C/C 0 = 0.79) in case of sand columns. However, this difference was only 20% in case of soil columns. Peak normalized concentrations at the outlet were less in soil column as compared to those in sand column because of lesser grain size. Unlike the earlier studies with pulse input, present experiments with continuous input of metabolically active bacteria along with substrate indicated that the normalized concentration at the outlet increased with increased concentration at the inlet. It was found that unsaturated conditions led to more retention of bacteria in both sand and soil columns. In case of sand columns, the normalized concentration at the exit reduced to as much as 0.46. It was also found that the existing mathematical models based on macroscopic advection–dispersion–filtration equations could satisfactorily simulate the bacterial transport except in a case where the substrate was added to the bacteria in the column studies.  相似文献   

5.
The atomic force microscope (AFM) has been used to study inter-particle contacts in air for a range of model particles and cohesive granular materials of commercial importance. Adhesion (or pull-off force), friction and its load dependence, and particle size, morphology and roughness were measured for glass ballotini, fumed silica, alumina, limestone, titania and zeolite. Particle-wall contacts and effects of relative humidity were also studied. Most of the results, after allowing for roughness, are consistent with JKR contact mechanics and capillary bridge theory; however, the main object of the present work is to demonstrate semi-quantitative links between the AFM measurements and related bulk flow and cohesion measurements performed in parallel on the same materials. A simple model of a particle assembly will be used to compare average contact forces in typical single-particle AFM experiments and typical bulk experiments, and thus identify those regimes of powder flow where the two approaches overlap, and AFM measurements may be used with some confidence in more sophisticated modeling based on distinct element analysis (DEA). Four areas will be discussed briefly: (1) The apparent analogy between bulk yield loci and single-particle friction-load data; (2) Cohesion data and particle size effects; (3) Bulk tensile strength and single particle pull-off force; (4) Bulk wall friction and single-particle-wall friction. It is found that typical single-particle AFM experiments and bulk shear experiments converge for small particles (~ 4 μm) and low consolidation stress, when the average inter-particle contact forces are of the order 20–100nN, involve single or few asperities, and are not much larger than pull-off forces. For large particles and high consolidation loads the data do not overlap and AFM measurements may be less useful as input to simulations where sliding friction is less important, and where large normal contact forces dominate over tangential forces and are responsible for the shear strength.  相似文献   

6.
The interactions between organics and sand particles at different moisture contents are important in understanding the general mechanical behavior of rootzone sand mixtures. Towards this end, eight rootzone sand mixtures (4 shapes ×2 moisture contents) used in golf green construction were tested using the cubical triaxial tester (CTT). These eight mixtures consist of sphagnum peat as the organic source and four sands of varying particle shape (round, subround, subangular, and angular). The sand-peat mixtures were tested at two moisture contents (air-dried and 30 cm tension). Of all the test samples, air-dried round sand with peat had the highest initial bulk density (IBD) value (1.49 g/cc), while moist angular sand with peat had the lowest IBD value (1.23 g/cc). These values influenced the compression behavior of samples, for example, the air-dried round sand with peat was least compressible while moist angular sand with peat was most compressible. Generally, moisture enhanced the compressibility of test specimens. At an isotropic pressure of 100 kPa, the volumetric strain value of moist round sand with peat was 47% higher than the volumetric strain value of the air-dried round sand with peat. Consequently, moisture and peat in bulk sand samples act as lubricants and assist in the compression process. In addition, bulk modulus values decreased with moisture. Due to the dominant effect of peat, there were no large differences between bulk modulus values of different particle shapes. The shear and failure responses of the above-mentioned eight compositions were also analyzed, compared, and modeled. Of all sand mixtures tested, air-dried angular sands with peat had the highest brittle-type failure stress value, 181 kPa at 34.5 kPa confining pressure, and moist subangular sand with peat had the lowest ductile-type failure stress value, 141 kPa at the same confining pressure. Shear modulus values increased with the increase of mean pressure, but in the case of sands containing both moisture and peat, shear modulus values increased gradually. Overall, peat and moisture content have a dominant effect on the compression and failure behavior of the rootzone sands.

rootzone sand mixtures moisture effect particle shape effect organics effect mechanical behavior compression response shear/failure response prediction models  相似文献   

7.
The interactions between organics and sand particles at different moisture contents are important in understanding the general mechanical behavior of rootzone sand mixtures. Towards this end, eight rootzone sand mixtures (4 shapes 2 2 moisture contents) used in golf green construction were tested using the cubical triaxial tester (CTT). These eight mixtures consist of sphagnum peat as the organic source and four sands of varying particle shape (round, subround, subangular, and angular). The sand-peat mixtures were tested at two moisture contents (air-dried and 30 cm tension). Of all the test samples, air-dried round sand with peat had the highest initial bulk density (IBD) value (1.49 g/cc), while moist angular sand with peat had the lowest IBD value (1.23 g/cc). These values influenced the compression behavior of samples, for example, the air-dried round sand with peat was least compressible while moist angular sand with peat was most compressible. Generally, moisture enhanced the compressibility of test specimens. At an isotropic pressure of 100 kPa, the volumetric strain value of moist round sand with peat was 47% higher than the volumetric strain value of the air-dried round sand with peat. Consequently, moisture and peat in bulk sand samples act as lubricants and assist in the compression process. In addition, bulk modulus values decreased with moisture. Due to the dominant effect of peat, there were no large differences between bulk modulus values of different particle shapes. The shear and failure responses of the above-mentioned eight compositions were also analyzed, compared, and modeled. Of all sand mixtures tested, air-dried angular sands with peat had the highest brittle-type failure stress value, 181 kPa at 34.5 kPa confining pressure, and moist subangular sand with peat had the lowest ductile-type failure stress value, 141 kPa at the same confining pressure. Shear modulus values increased with the increase of mean pressure, but in the case of sands containing both moisture and peat, shear modulus values increased gradually. Overall, peat and moisture content have a dominant effect on the compression and failure behavior of the rootzone sands. rootzone sand mixtures moisture effect particle shape effect organics effect mechanical behavior compression response shear/failure response prediction models  相似文献   

8.
The effect of residual stress on the fracture of chemically strengthened thin aluminosilicate glass was investigated. The large deflection problem on the flexure of thin chemically strengthened glass was solved through finite element analysis. The relationship among compressive stress (CS), central tension (CT), and the modulus of rupture of chemically strengthened thin glass was also discussed. High CS and low CT improved the flexural strength of chemically strengthened glass. However, the effect of residual stress was more complex on Weibull modulus than on strength. The effect of residual stress on the fractography of chemically strengthened thin glass was analyzed. Transparent and opaque zones were observed on the fracture surface of chemically strengthened glass. The relative thickness of the opaque zone (d Opaque/d 0), which is a constant in the same fracture zone, linearly decreased with increasing fracture zone. This result indicates that the stored elastic strain energy was released with the number of transverse cracks. These results provide useful information on the failure analysis of chemically strengthened thin glass.  相似文献   

9.
A series of methyltriethoxysilane-based silica aerogel monoliths were prepared by ambient pressure drying with various volume ratios of water to ethanol (R). The pore volumes and average pore sizes of silica aerogels were obtained by Barrett–Joyner–Halenda (BJH) method from nitrogen adsorption–desorption isotherms. The stress–strain curves of the cylindrical aerogel specimens were measured by performing uniaxial compressive tests. The particle size distributions and the average particle sizes of silica aerogels were also evaluated based on scanning electron microscopic observations. The experimental data revealed that the average particles size increased from 0.115 to 3.08 μm as R varied from 0.7 to 1.5, and that the silica aerogels exhibited two characteristic types of the compressive stress–strain responses. By proposing a multiscale structural model to describe microstructures of silica aerogels, a structural parameter, defined as the slenderness L/D of the cube column length L and the average particle diameter D, was related to the specific volume and the BJH volume of the silica aerogel monoliths, as well as the specific volume of silica. Accordingly, the two types of the compressive stress–strain responses may be distinguished by the critical value (L/D)c.  相似文献   

10.
Summary Work on directional properties in granular media is briefly reviewed with an emphasis on the angular frequency of normals to particle contact tangents. Data from a two dimensional model material is compared with that of sand sheared in plane strain with a similar stress path. This stress path included a chosen sudden change in major principal stress direction.Directional stress-strain behaviour in granular media is related to the changing angular frequency of particle contacts. Measurements of this changing frequency are related to new model predictions and actual experimental data for sand sheared in plane strain.With 5 Figures  相似文献   

11.
12.
Mesoporous bioactive glass (BG) nanoparticles based in the system: SiO2–P2O5–CaO–MnO were synthesized via a modified Stöber process at various concentrations of Mn (0–7 mol %). The synthesized manganese-doped BG nanoparticles were characterized in terms of morphology, composition, in vitro bioactivity and antibacterial activity. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis confirmed that the particles had spherical morphology (mean particle size: 110?nm) with disordered mesoporous structure. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of Mn, Ca, Si and P in the synthesized Mn-doped BG particles. Moreover, X-ray diffraction (XRD) analysis showed that Mn has been incorporated in the amorphous silica network (bioactive glass). Moreover, it was found that manganese-doped BG particles form apatite crystals upon immersion in simulated body fluid (SBF). Inductively coupled plasma atomic emission spectroscopy (ICP-OES) measurements confirmed that Mn is released in a sustained manner, which provided antibacterial effect against Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus. The results indicate that the incorporation of Mn in the bioactive glass network is an effective strategy to develop novel multifunctional BG nanoparticles for bone tissue engineering.  相似文献   

13.
Evolution of parameters of fracture mechanics at various stages of low-cycle damage is studied. The developed approach is based on elaboration of optical interference measurements of the deformation response to a small crack length increment. Three sequential symmetrical notches simulate the fatigue crack growth process across the cumulative fatigue damage zone caused by low-cycle fatigue. The values of tangential components of displacement that are measured at several points on cut edges by electronic speckle interferometry are initial experimental information. The coefficients of stress intensity (SIC) and T strains are determined on the basis of the Williams solution. Values of opening and coefficients of stress intensity (SIC) and T strains for cracks of different length with fixed values of preloading cycles Nc equal 0, 100, 1000, 1800, 2500, and 3300 are obtained. The dependences of the parameters of fracture mechanics for cracks of the fixed length on Nc are constructed.  相似文献   

14.
Ballast contamination by fine materials such as sand and clay in railway track at arid regions is an important issue that causes track instability problems and settlement due to reduction of shear strength of ballast. In this paper, the results of direct shear box test conducted on clean ballast, sand-fouled ballast and clay-fouled ballast for different ballast gradations are reported and discussed. For this purpose, three different fouling amounts according to fouling index are added to clean ballast. Test results show that by increasing the fouling percentage, the ballast shear strength always decreases both for sand and clay fouled ballast. However, the amount of shear strength reduction is low at high normal stresses. Clay contamination has more adverse effect on the shear strength of ballast compared with sand contamination. Also, the results of tests for evaluation of gradation effect on shear strength of fouled ballast which are conducted on various gradations according to American Railway Engineering and Maintenance-of-Way Association, show that the maximum particle size as well as uniformity coefficient affect the shear strength of ballast. Also, an empirical equation is presented to observe the effect of ballast gradation on reduction of shear strength with regard to amount of fouling material and normal stress.  相似文献   

15.
Over the last decade, new types of display technologies have increasingly replaced cathode ray tube (CRT) displays leading to an increase in the disposal of discarded old CRT monitors and TV sets. The present study is a further development of our previous work to explore the effects of using different size fractions of crushed CRT glass as 100 % substitution of sand in cement mortar. A range of cement mortar mixes were prepared and the tests conducted included table flow (fluidity), mechanical strength, drying shrinkage, alkali–silica reaction (ASR) expansion and toxicity characteristic leaching procedures. Generally, the results obtained for the CRT glass-based cement mortars were comparable to those of the beverage glass mortars except the hardened density due to the presence of lead in the CRT glass. Decreasing the particle size of the CRT glass led to a decrease in fluidity, compressive strength and water absorption. However, the use of finer glass particles slightly improved the flexural strength and reduced the risk of expansion due to ASR due to its pozzolanic reaction. The experimental results indicated that treated CRT glass can be utilized as 100 % replacement of sand in cement mortar regardless of its particle size.  相似文献   

16.
A series of copper (Cu)-containing glasses were synthesized and incorporated into a SiO2–ZnO–CaO–SrO–P2O5-based glass system. Additions of 6 and 12 mol% CuO retained the amorphous character, and glasses were processed to possess similar particle sizes and surface areas. Glass characterization using X-ray photoelectron spectroscopy and magic angle spinning nuclear magnetic resonance determined that the addition of 12 mol% CuO increased the fraction of Q4-speciation and the concentration of bridging oxygens. Each glass presented solubility profiles for the release of Si4+ (18–31 mg/L), Ca2+ (13–16 mg/L), Zn2+ (<3 mg/L) and Sr2+(2–10 mg/L); however, no Cu2+ or P5+ were released. Cu-GPCs were formulated, and the working time (T w) and setting times (T s) were found to be dependent on both polyacrylic acid concentration and CuO addition. The mechanical properties, i.e. the compressive strength (18–30 MPa) and the adhesive bond strength (0.79–1.32 MPa), were relative low which is likely due to the glass structure. Antibacterial properties were evaluated in E. coli (4 mm), S. epidermidis (10 mm), S. aureus (UMAS-1) and vancomycin resistant S. aureus (2 mm) and presented antibacterial effects in each microbe tested.  相似文献   

17.
Results of an experimental study of the noise temperature (T n ) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (T b ) are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (T c ) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature T b close to T c was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at T b ? T c for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/ metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.  相似文献   

18.
Silicone rubber foams filled with various content and different particle size of hollow glass bead (HGB) were prepared by compression molding. It was revealed that compared with silica filled silicone rubber foams, HGB filled materials achieved higher foaming extent, lower thermal conductivity, and lower hardness, which can be significant for thermal insulation materials. For HGB filled materials, the morphology indicated the average cell size decreased with higher HGB content and larger particle size of HGB. The density, thermal conductivity, hardness and tensile strength increased with higher HGB content and larger particle size of HGB.  相似文献   

19.
Pneumatic conveying of bulk materials has become an important technology in many industries: from pharmaceuticals to petro-chemicals and power generation. Particulate segregation has been investigated in many solids handling processes. However, little work has been published on the segregation and mixing in pneumatic conveying pipelines, particularly in dense phase pneumatic conveying. Due to the character of dense phase flow, it is difficult to investigate the segregation in a flowing plug. A sampling device was designed and built to take samples from the pneumatic conveying pipeline after “catching a plug”. Several experiments were conducted over a range of gas–solids flow conditions with 3 mm nylon pellets and 3 mm ballotini as a segregating mixture. Experimental data combined with video footage were analysed to describe the segregation and mixing of solids plugs in pipes. This investigation provides initial research on establishing a segregation index in a flowing plug. A gas–solids two-dimensional mathematical model was developed for plug flow of a nylon-glass particulate mixture in a horizontal pipeline in dense phase pneumatic conveying. The model was developed based on the discrete element method (DEM). The model was used to simulate the motion of particles both in a homogeneous flow and as binary mixtures taking into account the various interactions between gas, particles and pipe wall. For the gas phase, the Navier Stokes equations were integrated by the semi-implicit method for pressure-linked equations (SIMPLE) using the scheme of Patankar employing the staggered grid system. For the particle motion the Newtonian equations of motion of individual particles were integrated, where repulsive and damping forces for particle collision, the gravity force, and the drag force were taken into account. For particle contact, a model with a simple non-linear spring and dash pot model for both normal and tangential components was used. This model employed a mixture of 3 mm pellets and ballotini as virtual materials with properties of nylon and glass. The results from the model are discussed and compared with experimental work and show qualitative agreement. Further modelling and experimental work in key areas is proposed.  相似文献   

20.
Viscoelastic stress relaxation of glass fibre reinforcements is commonly encountered in the manufacture of glass fibre reinforced polymer composites. A better understanding of the phenomenon, coupled with an ability to predict this behaviour, will aid improved manufacturing process control and tooling design. Finished product quality may also be bettered by virtue of increased knowledge of stresses acting within the composite product. This paper presents a simple Maxwell element-based model to both simulate and help explain the viscoelastic stress relaxation of glass fibre reinforcements under compressive strain compaction of layers during composites manufacturing. The model was validated against experimental data for reinforcement materials of different architecture, and good-to-reasonable predictions of the stress relaxation response were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号