首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
\(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\) crystallizes in tetragonal CeOBiS\(_{2}\) structure (S. G. P4/nmm). We have investigated the effect of pressure on magnetization measurements. Our studies suggest improved superconducting properties in polycrystalline samples of \(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\). The \(T_{\mathrm{c}}\) in our sample is 5.3 K, at ambient pressure, which is marginal but definite enhancement over \(T_{\mathrm{c}}\) reported earlier (= 5.1 K). The upper critical field \(H_{\mathrm{c}2}\)(0) is greater than 3 T, which is higher than earlier report on this material. As determined from the MH curve, both \(H_{\mathrm{c}2}\) and \(H_{\mathrm{c}1}\) decrease under external pressure P (0 \(\le P \le \) 1 GPa). We observe a decrease in critical current density and transition temperature on applying pressure in \(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\).  相似文献   

2.
Anisotropy of elasticity is a very important feature of granular soils. In this paper, numerical experiments using discrete element method were performed to emulate drained triaxial tests and simple shear tests at different stress levels. From these numerical experiments the macroscopic elasticity parameters were determined. The results show that at isotropic stress states the stiffness of the numerical specimen increases, while the Poisson’s ratio decreases with increasing confining pressure. The small strain shear modulus of the numerical specimen agrees well with the laboratory experimental results on a specimen with similar conditions. At anisotropic stress states, there is a threshold stress ratio (\({ SR}_{\mathrm{th}}\)), which characterizes the degrees of stiffness change and fabric change during the shearing. When the stress ratio (SR) is less than \({ SR}_{\mathrm{th}}\), the microscopic contact number does not change and its distribution remains nearly isotropic, while the distribution of contact forces change and become anisotropic to resist the applied anisotropic stress. Therefore the stiffness anisotropy of the specimen mainly results from the anisotropy of contact forces. When SR is larger than \({ SR}_{\mathrm{th}}\), however, the contact number decreases significantly in the minor principal stress direction resulting in the fabric anisotropy, along with the adjustments of contact forces. The stiffness anisotropy of the specimen results from both the fabric anisotropy and the contact force anisotropy. It also indicates that the stress normalized stiffness may be used as an index of the degree of fabric anisotropy. Moreover, the Poisson’s ratio of the specimen increases continuously with increasing stress ratio and its anisotropy can be approximately related to the stiffness anisotropy.  相似文献   

3.
Critical state line (CSL) is the central concept in soil mechanics. A series of true triaxial compression tests under the constant-\({p}'\) and constant-b loading condition were carried out to investigate the CSL of a coarse granular soil. It was observed that the intermediate principal stress ratio (i.e., the b-value) greatly influenced the CSLs in both \(q{-}{p}'\) and \(e{-}{p}'\) spaces. The CSL slope in the \(q{-}{p}'\) space decreased with an increase in b-value. The intercept and gradient of the CSL in the \(e{-}{p}'\) space decreased with increasing b-value. CSLs incorporating the effects of the b-value in \(q{-}{p}'\) and \(e{-}{p}'\) spaces were extended to three-dimensional critical state surfaces (TCSSs) in \(q{-}{p}'{-}b\) and \(e{-}{p}'{-}b\) spaces. Two empirical equations were proposed for the two TCSSs in \(q{-}{p}'{-}b\) and \(e{-}{p}'{-}b\) spaces, respectively. The predictions by the two equations were in good agreement with the corresponding experimental data. The relationship between the excess friction angle (the difference between the peak state and critical state friction angles) and initial state parameter was influenced by the b-value. However, the relationship between the maximum dilatancy and initial state parameter was independent of the b-value.  相似文献   

4.
The magnetocaloric effect is investigated for \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge4 (0.25 ≤ x ≤ 2) system near a phase transition from a ferromagnetic to a paramagnetic state as a function of temperature with low external magnetic field change of 100 Oe. The sample with x = 1 has the smallest value of maximum magnetic entropy change and the specific heat change, and highest values of full-width at half-maximum and relative cooling power. The results indicate that the \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge4 system has a prospective application for magnetic refrigerant in an extended high temperature range. Consequently, \(\text {Gd}_{\mathrm {5-}_{x}}\)Eu x Ge4 compounds are very attractive candidates for magnetic refrigeration applications, especially nitrogen liquefier.  相似文献   

5.
The critical-state response of granular assemblies composed of elastic spheres under generalised three-dimensional loading conditions was investigated using the discrete element method (DEM). Simulations were performed with a simplified Hertz–Mindlin contact model using a modified version of the LAMMPS code. Initially isotropic samples were subjected to three-dimensional stress paths controlled by the intermediate stress ratio, \(b=[(\sigma '_{2}-\sigma '_{3})/\) \((\sigma '_{1}-\sigma '_{3})]\) . Three types of simulation were performed: drained (with \(b\) -value specified), constant volume and constant mean effective stress. In contrast to previous DEM observations, the position of the critical state line is shown to depend on \(b\) . The data also show that, upon shearing, the dilatancy post-peak increases with increasing \(b\) , so that at a given mean effective stress, the void ratio at the critical state increases systematically with \(b\) . Four commonly-used three-dimensional failure criteria are shown to give a better match to the simulation data at the critical state than at the peak state. While the void ratio at critical state is shown to vary with \(b\) , the coordination number showed no dependency on \(b\) . The variation in critical state void ratios at the same \(p'\) value is apparently related to the directional fabric anisotropy which is clearly sensitive to \(b\) .  相似文献   

6.
First-principles density functional calculations on the new class of diluted magnetic semiconductor \(A_{1-x}^{III}{Mn}_{x}B^{VI}\) In1?x Mn x S for x =?0.25 and 0.5 are investigated to study the structural, electronic, and magnetic properties, employing the full-potential linearized augmented plane wave method. Electronic band structures and density of states revealed a half-metallic character of In1?x Mn x S and show the stability of anti-ferromagnetic states as compared with ferromagnetic states. The calculated exchange constants J dd are in good agreement with experimental and theoretical results on magnetic properties of single crystalline \(\mathrm {A}_{1-x}^{\text {III}}{\text {Mn}}_{x}\mathrm {B}^{\text {VI}}\) in the anti-ferromagnetic case. Our predicated calculations on the s,p-d exchange constants N 0 α and N 0 β show that they are lower than in \(\mathrm {A}_{1-x}^{\text {II}}{\text {Mn}}_{x}\mathrm {B}^{\text {VI}}\) DMS. The local environment is found tetrahedral as in the II–VI DMS and other (III,Mn) VI compounds. The total magnetic moment for In1?x Mn x S for different concentrations is in accordance with the exact value 5 μ B and comes mainly from impurity Mn. The local magnetic moments of Mn ions are reduced from their free space charges values due to the p-d hybridization which produces small magnetic moments on the nonmagnetic In and S sites. The Curie temperature of In1?x Mn x S is calculated within the mean field approximation and compared with other DMS systems.  相似文献   

7.
The isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\), saturation densities (\({\rho _{\rm S}^{\prime}}\) and \(({\rho_{\rm S}^{\prime\prime})}\)), vapor pressures (P S), thermal-pressure coefficients \({\gamma_V=\left({\partial P/\partial T}\right)_V}\), and first temperature derivatives of the vapor pressure γ S = (dP S/dT) of diethyl ether (DEE) on the liquid–gas coexistence curve near the critical point have been measured with a high-temperature and high-pressure nearly constant-volume adiabatic piezo-calorimeter. The measurements of \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) were made in the liquid and vapor one- and two-phase regions along the coexistence curve. The calorimeter was additionally supplied with a calibrated extensometer to accurately and simultaneously measure the PVTC V VT, and thermal-pressure coefficient, γ V , along the saturation curve. The measurements were carried out in the temperature range from 416 K to 466.845 K (the critical temperature) for 17 liquid and vapor densities from 212.6 kg · m?3 to 534.6 kg · m?3. The quasi-static thermo- (reading of PRT, T ? τ plot) and baro-gram (readings of the tensotransducer, P ? τ plot) techniques were used to accurately measure the phase-transition parameters (P S ,ρ S ,T S) and γ V . The total experimental uncertainty of density (ρ S), pressure (P S), temperature (T S), isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\), and thermal-pressure coefficient, γ V , were estimated to be 0.02 % to 0.05 %, 0.05 %, 15 mK, 2 % to 3 %, and 0.12 % to 1.5 %, respectively. The measured values of saturated caloric \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) and saturated thermal (P S, ρ S, T S) properties were used to calculate other derived thermodynamic properties C P C SWK T P int, ΔH vap, and \({\left({\partial V/\partial T}\right)_P^{\prime}}\) of DEE near the critical point. The second temperature derivatives of the vapor pressure, (d2 P S/dT 2), and chemical potential, (d2 μ/dT 2), were also calculated directly from the measured one- and two-phase liquid and vapor isochoric heat capacities \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) near the critical point. The derived values of (d2 P S/dT 2) from calorimetric measurements were compared with values calculated from vapor–pressure equations. The measured and derived thermodynamic properties of DEE near the critical point were interpreted in terms of the “complete scaling” theory of critical phenomena. In particular, the effect of a Yang–Yang anomaly of strength R μ on the coexistence-curve diameter behavior near the critical point was studied. Extended scaling-type equations for the measured properties P S (T), ρ S (T), and \({({C_{V1}^{\prime}} ,{C_{V1}^{\prime\prime}},{C_{V2}^{\prime}},{C_{V2}^{\prime\prime}})}\) as a function of temperature were developed.  相似文献   

8.
Let f be an unknown multivariate density belonging to a set of densities \(\mathcal{F}_{k^{*}}\) of finite associated Vapnik–Chervonenkis dimension, where the complexity k * is unknown, and ? k ?? k+1 for all k. Given an i.i.d. sample of size n drawn from f, this article presents a density estimate \(\hat{f}_{K_{n}}\) yielding almost sure convergence of the estimated complexity K n to the true but unknown k * and with the property \(\mathbf{E}\{\int|\hat{f}_{K_{n}}-f|\}=\mbox{O}(1/\sqrt{n}\,)\). The methodology is inspired by the combinatorial tools developed in Devroye and Lugosi (Combinatorial methods in density estimation. Springer, New York, 2001) and it includes a wide range of density models, such as mixture models and exponential families.  相似文献   

9.
Let \({\mathbb {F}}_{2^m}\) be a finite field of characteristic 2 and \(R={\mathbb {F}}_{2^m}[u]/\langle u^k\rangle ={\mathbb {F}}_{2^m} +u{\mathbb {F}}_{2^m}+\ldots +u^{k-1}{\mathbb {F}}_{2^m}\) (\(u^k=0\)) where \(k\in {\mathbb {Z}}^{+}\) satisfies \(k\ge 2\). For any odd positive integer n, it is known that cyclic codes over R of length 2n are identified with ideals of the ring \(R[x]/\langle x^{2n}-1\rangle \). In this paper, an explicit representation for each cyclic code over R of length 2n is provided and a formula to count the number of codewords in each code is given. Then a formula to calculate the number of cyclic codes over R of length 2n is obtained. Moreover, the dual code of each cyclic code and self-dual cyclic codes over R of length 2n are investigated.  相似文献   

10.
Understanding how forces propagate in granular assemblages is important for equipment design and process control in many technologies. Yet, it remains poorly understood. In this study, a cuboidal assembly comprising cylinders of various lengths (aspect ratios AR ranging from 0.9 to 3.6) were subjected to uniaxial confined compression tests. Samples were vertically compressed until the top platen exerted a pressure of 50 kPa on the uppermost particles. This maximum pressure corresponds to the hydrostatic pressure of an approximately 15 m high column of chopped wood that may be encountered in real storage structures. The nonlinear loading curves were obtained depended on the aspect ratios of the cylinders. The modulus of elasticity, calculated from the linear elastic part of the stress–strain curve, monotonically decreased from 10.2 to 8.6 MPa as the aspect ratio increased from 1.2 to 3.6. The elastic modulus and volume fraction exhibited similar trends as functions of the aspect ratio. The horizontal-to-vertical pressure ratio was calculated as the horizontal pressure exerted on the wider walls to the vertical pressure exerted on the top lid during loading–unloading cycles. For ARs up to 3.6, the pressure ratio was approximately 0.31; for the longest cylinders (AR = 3.6), it decreased to approximately 0.27, probably because the assumption of the representative chamber volume was invalidated at this AR.  相似文献   

11.
Using a density functional scheme, for the first time the carbon dependence on the structural, dynamic, thermodynamic, and dynamic properties of \(\hbox {Si}_{1-x}\hbox {C}_{x} \) alloys (\(x=0.0\) to 1.0 in steps of 0.125) has been investigated. The structural properties of these materials, in particular, the composition dependence of the lattice parameter and bulk modulus, are in excellent agreement with experimental data and follow a quadratic law in (x). A nonlinear relationship is found between the elastic constants \(C_{11}\), \(C_{12}\), and \(C_{44}\) and the carbon concentration (x). The behavior of the acoustical and optical phonon frequencies at high-symmetry points \(\varGamma \), X, and L is predicted. Through the quasi-harmonic Debye model, in which the photonic effects are taken into account, the Debye temperature, the heat capacity, the Helmholtz free energy, the internal energy, and the entropy are determined for the \(\hbox {Si}_{1-x}\hbox {C}_{x }\) compounds.  相似文献   

12.
In the present study, we investigate the influence of the hafnium (Hf) impurities on the magnetoresistance of \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\delta }\) ceramic samples in the temperature interval of the transition to the superconducting state in constant magnetic field up to 12 T. The cause of the appearance of low- temperature “tails” (paracoherent transitions) on the resistive transitions, corresponding to different phase regimes of the vortex matter state is discussed. At temperatures higher than the critical temperature (T > \(T_\mathrm{c})\), the temperature dependence of the excess paraconductivity can be described within the Aslamazov–Larkin theoretical model of the fluctuation conductivity for layered superconductors.  相似文献   

13.
By using Shubnikov-de Haas oscillations in crossed magnetic fields, we measured the temperature dependence of the renormalized spin susceptibility \(\chi _{i}^{*}(T)\) for strongly interacting itinerant 2D electrons in silicon. The weak \(\delta \chi _{i}^{*}(T)\) dependence, only a few percent over the range T = (0.1 ? 1) K, agrees qualitatively with the predicted interaction corrections. However, in strong in-plane magnetic fields, the χ ?(T) dependence does not vanish or weaken as expected for the interaction corrections. We found that the susceptibility variations are correlated with the T-dependence of the density of itinerant electrons extracted from the magnetooscillation period. We conclude therefore that the \(\chi _{i}^{*}(T)\) dependence is affected by a T-dependent exchange of electrons between the subsystems of itinerant and localized electrons which are in thermodynamic equilibrium.  相似文献   

14.
Nanometer scale is introduced in the well-known Haldane system \(\hbox {Y}_{2}\hbox {BaNiO}_{5}\,(S=1)\). Magnetization and pulsed-field electron spin resonance (ESR) measurements were performed. As a result, the magnetization of nanoparticles is much enhanced as compared with that of the bulk material. The Haldane gap in the bulk form tends to be suppressed as the grain size is reduced down to the nanometer scale. The chain-end \(S\hbox {-}1/2\) spins have an important contribution to the magnetism of nanoparticles. The high-field ESR data demonstrated a paramagnetic-like resonance. The frequency–field (fH) relationship is linear and passes through the origin. The g value is about 2.16, in good agreement with the typical value of paramagnetic \(\hbox {Ni}^{2+}\). It is concluded that the nanometer scale is a new degree of freedom for controlling the ground state of quantum magnets.  相似文献   

15.
Interband superconductivity channels with pairs formed from the same (a) and different bands (b) are compared in common action. A simple mean-field multiband model is inspected. There are three order parameters Δ a , Δ a d and \({\Delta }_{b} \left ({\Delta }_{b1}^{2}={\Delta }_{b2}^{2} \right )\). Complicated quasiparticle energies induced by interactions of strengths W a and W b follow. The calculated operator averages lead to a coupled nonlinear system for the gap-type parameters. Illustrative calculations of them vs temperature have been made. Overlapping dispersive bands intersected by the chemical potential have been used. A novel result is that at a fixed parameter set the system of basic equations has two independent solutions. The free energy is of a complicated structure under the action of both channels. There are stable and metastable states. The W a and W b channels compete in simultaneous functioning. The phenomenon of the effective logout of one of the channels can be traced. Starting by the temperature where Δ i reached zero, the solutions induced by W j behaving as W i were zero and define T c i . The pairs Δ a and Δ a d have the same vanishing temperature. The general results are very sensible to |W b | inclusive to critial behaviour. Reduced |W b | stimulates the formation of closed “bubbles” built up by Δ a , Δ b and Δ a d belonging to parallel solutions. The corresponding metastable state vanishes when the bubble closes.  相似文献   

16.
The superconducting state in vanadium characterizes with the critical temperature (T c ) equal to 5.3 K. The Coulomb pseudopotential, calculated with the help of the Eliashberg equations, possesses anomalously high value μ ?(3Ωmax) = 0.259 or μ ?(10Ωmax) = 0.368 (Ωmax denotes the maximum phonon frequency). Despite the relatively large electron-phonon coupling constant (λ = 0.91), the quantities such as the order parameter (Δ), the specific heat (C), and the thermodynamic critical field (H c ) determine the values of the dimensionless ratios not deviating much from the predictions of the BCS theory: R Δ = 2Δ(0)/k B T c = 3.68, R C = ΔC(T c ) /C N (T c ) = 1.69, and \(R_{H}=T_{c}C^{N}\left (T_{c}\right )\slash {H^{2}_{c}}\left (0\right )=0.171\). This result is associated with the reduction of the strong-coupling and the retardation effects by the high value of the Coulomb pseudopotential. It has been shown that the results of the Eliashberg formalism can be relatively precisely reproduced with the help of the semi-analytical formulas, if the value of μ ? is determined on the basis of the T c -Allen-Dynes expression (μ A D? = 0.198). The attention should be paid to the fact that in the numerical and in the semi-analytical approach the comparable values of the thermodynamic parameters for the same μ ? have been obtained only in the vicinity of the point μ ? = 0.1.  相似文献   

17.
Axial dispersion of cubic particles in horizontal, rotating cylinders was investigated using discrete element modelling simulations. We found that, similar to the behavior of spheres, the axial dispersion coefficient of cubes depends on (1) the rotational speed of the cylinder \({\omega }\), (2) the acceleration due to gravity g and (3) the particle size d, satisfying the relationship \({D}_\mathrm {ax}\propto {\omega }^{1-2{\lambda }}{g}^{{\lambda }}{d}^{2-{\lambda }}\) with \({\lambda }\approx 0.15\) (\({\lambda }\approx 0.1\) for beds of spheres) (Third et al. in Powder Technol 203:510–517, 2010). This observation suggested that, although particle shape influences significantly the rate of axial dispersion (cubes disperse almost twice as fast as spheres of equal volume), the parameters controlling the coefficient of dispersion are independent of particle shape.  相似文献   

18.
The critical temperature (TC) of MgB2, one of the key factors limiting its application, is highly desired to be improved. On the basis of the meta-material structure, we prepared a smart meta-superconductor structure consisting of MgB2 micro-particles and inhomogeneous phases by an ex situ process. The effect of inhomogeneous phase on the TC of smart meta-superconductor MgB2 was investigated. Results showed that the onset temperature (\(T_{\mathrm {C}}^{\text {on}}\)) of doping samples was lower than those of pure MgB2. However, the offset temperature (\({T}_{\mathrm {C}}^{\text {off}}\)) of the sample doped with Y2O3:Eu3+ nanosheets with a thickness of 2 ~ 3 nm which is much less than the coherence length of MgB2 is 1.2 K higher than that of pure MgB2. The effect of the applied electric field on the TC of the sample was also studied. Results indicated that with the increase of current, \({T}_{\mathrm {C}}^{\text {on}}\) is slightly increased in the samples doping with different inhomogeneous phases. With increasing current, the \({T}_{\mathrm {C}}^{\text {off}}\) of the samples doped with nonluminous inhomogeneous phases was decreased. However, the \({T}_{\mathrm {C}}^{\text {off}}\) of the luminescent inhomogeneous phase doping samples increased and then decreased with increasing current.  相似文献   

19.
Marine shell waste is rich in calcium carbonate \((\hbox {CaCO}_{3})\), which can be a good source for the synthesis of hydroxyapatite (HAP). HAP is a potential component in bone tissue engineering as it possesses similar elements to bone structure. In this study, three different species of marine shells that are normally found in Malaysia, namely short-necked clam (Paphia undulate), blood cockle (Anadara granosa) and hard clam (Meretrix lyrata) were used to produce \(\hbox {CaCO}_{3}\) and HAP. The characterization results indicate that the produced \(\hbox {CaCO}_{3}\) consists of mainly aragonite polymorph. Subsequently, the produced \(\hbox {CaCO}_{3}\) was used as the calcium source for the formation of HAP through the wet slurry precipitation method. The results from the analyses on crystallinity, functional group, surface morphology and elemental analysis of the synthesized HAP powders that were obtained through X-ray diffraction (XRD), Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) have confirmed that HAP is comparable with other studies. Overall, the results obtained through this study indicate that it is possible to produce \(\hbox {CaCO}_{3}\) and HAP from various marine-based shell waste through greener synthesis routes with less chemicals and reactiontime.  相似文献   

20.
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号