首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao XH  Kong RM  Zhang XB  Meng HM  Liu WN  Tan W  Shen GL  Yu RQ 《Analytical chemistry》2011,83(13):5062-5066
On the basis of the remarkable difference in affinity of graphene (GO) with ssDNA containing a different number of bases in length, we for the first time report a GO-DNAzyme based biosensor for amplified fluorescence "turn-on" detection of Pb(2+). A FAM-labeled DNAzyme-substrate hybrid acted as both a molecular recognition module and signal reporter and GO as a superquencher. By taking advantage of the super fluorescence quenching efficiency of GO, our proposed biosensor exhibits a high sensitivity toward the target with a detection limit of 300 pM for Pb(2+), which is lower than previously reported for catalytic beacons. Moreover, with the choice of a classic Pb(2+)-dependent GR-5 DNAzyme instead of 8-17 DNAzyme as the catalytic unit, the newly designed sensing system also shows an obviously improved selectivity than previously reported methods. Moreover, the sensing system was used for the determination of Pb(2+) in river water samples with satisfying results.  相似文献   

2.
Dong Y  Wang R  Li G  Chen C  Chi Y  Chen G 《Analytical chemistry》2012,84(14):6220-6224
A novel sensing system has been designed for Cu(2+) ion detection based on the quenched fluorescence (FL) signal of branched poly(ethylenimine) (BPEI)-functionalized carbon quantum dots (CQDs). Cu(2+) ions can be captured by the amino groups of the BPEI-CQDs to form an absorbent complex at the surface of CQDs, resulting in a strong quenching of the CQDs' FL via an inner filter effect. Herein, we have demonstrated that this facile methodology can offer a rapid, reliable, and selective detection of Cu(2+) with a detection limit as low as 6 nM and a dynamic range from 10 to 1100 nM. Furthermore, the detection results for Cu(2+) ions in a river water sample obtained by this sensing system agreed well with that by inductively couple plasma mass spectrometry, suggesting the potential application of this sensing system.  相似文献   

3.
Du Y  Chen C  Zhou M  Dong S  Wang E 《Analytical chemistry》2011,83(5):1523-1529
Aptamers are artificial oligonucleotides that have been widely employed to design biosensors (i.e., aptasensors). In this work, we report a microfluidic electrochemical aptamer-based sensor (MECAS) by constructing Au-Ag dual-metal array three-electrode on-chip for multiplex detection of small molecules. In combination with the microfluidic channels covering on the glass chip, different targets are transported to the Au electrodes integrated on different positions of the chip. These electrodes are premodified by different kinds of aptamers, respectively, to fabricate different sensing interfaces which can selectively capture the corresponding target. It is an address-dependent sensing platform; thus, with the use of only one electrochemical probe, multitargets can be recognized and detected according to the readout on a corresponding aptamer-modified electrode. In the sensing strategy, the electrochemical probe, [Ru(NH(3))(6)](3+) (RuHex), which can quantitatively bind to surface-confined DNA via electrostatic interaction, was used to produce chronocoulometric signal; Au nanoparticles (AuNPs) were used to improve the sensitivity of the sensor by amplifying the detection signals. Moreover, the sensing interface fabrication, sample incubation, and electrochemical detection were all performed in microfluidic channels. By using this detection chip, we achieved the multianalysis of two model small molecules, ATP, and cocaine, in mixed samples within 40 min. The detection limit of ATP was 3 × 10(-10) M, whereas the detection limit of cocaine was 7 × 10(-8) M. This Au-Ag dual metal electrochemical chip detector integrated MECAS was simple, sensitive, and selective. Also it is similar to a dosimeter which accumulates signal upon exposure. It held promising potential for designing electrochemical devices with high throughput, high automation, and high integration in multianalysis.  相似文献   

4.
Koehne J  Chen H  Li J  Cassell AM  Ye Q  Ng HT  Han J  Meyyappan M 《Nanotechnology》2003,14(12):1239-1245
We report the detection of DNA PCR amplicons using an ultrasensitive label-free electronic technique based on multiwalled carbon nanotube (MWNT) nanoelectrode arrays embedded in an SiO(2) matrix. Specific PCR amplicons are reliably detected using electrochemical (EC) methods through allele-specific oligonucleotide hybridization. The inherent guanine bases in the DNA amplicon target of [Formula: see text] bases serve as signal moieties with the aid of Ru(bpy)(3)(2+) mediators, providing an amplified anodic current associated with the oxidation of guanine groups at the nanoelectrode surface. The reduced size and density of the nanoelectrode array provided by MWNTs dramatically improves the sensitivity of EC detection. In addition, the abundant guanine bases in target DNA produce a large signal. Less than [Formula: see text] target amplicons can be detected on a microspot, approaching the sensitivity limit of conventional laser-based fluorescence techniques. This method also eliminates the labelling requirement and makes the measurements much simpler. This platform can be employed for developing highly automated electronic chips with multiplex nanoelectrode arrays for quick DNA analysis.  相似文献   

5.
The synthesis and characterization of a novel water-compatible microsized material, based on fluorescent conjugated polymers (CPs), and its applicability for optical sensing of inorganic ions of environment interest (copper and cyanide) in water media is here described. Polyfluorene-based fluorescent CPs were synthesized and functionalized with imidazole moieties (selective recognition element) and a terminal double bond (covalently linked to an organic matrix) through a postfunctionalization strategy. Further, microspheres of the novel imidazole-functionalized fluorescent CPs, able to work in water media, were synthesized via a microemulsion and polymerization procedure. The synthesized imidazole-functionalized CP microspheres were then evaluated as fluorescence "turn-Off" sensing materials for Cu(2+) detection in aqueous media. Analyte detection was based on the quenching effect of the Cu(2+), selectively recognized by the imidazole group, on the polymer fluorescence emission. The developed optosensor exhibits a detection limit of 1 μg/L for the determination of Cu(2+) in water with a reproducibility of 4%. The synthesized microsized material was also evaluated for the "turn-on" optosensing of cyanide in water, measuring the recovery of the emission signal from the CP that has been previously deactivated by the presence of quencher species. The "turn-On" optosensor allows the selective determination of free cyanide in aqueous solution with high sensitivity (detection limit of 18 μg/L), obtaining a reproducibility of 2.9%. A high sample throughput (between 7 and 12 samples per hour) was achieved in both cases. Analytical applicability of the fluorescent CP microsphere materials has been successfully demonstrated by tap and mineral water analysis.  相似文献   

6.
Self-assembled peptide nanostructures are electronically insulating as are most biomaterials derived from natural amino acids. To obtain additional properties and increase the applicability of peptide nanomaterials, some chemical modifications can be performed and materials can be functionalized to form hybrid compounds. In this work, we described the formation of L-diphenylalanine nanotubes (PNTs) with cyclic-tetrameric copper(II) species containing the ligand (4-imidazolyl)ethylene-2-amino-1-ethylpyridine [Cu(4)(apyhist)(4)](4+) in the Nafion membrane on a vitreous carbon electrode surface. This copper complex has been studied as structural and functional models for the active centers of copper containing redox enzymes. Scanning electron microscopy was used to confirm the formation of the nanostructures. The electrochemical properties of the PNT-[Cu(4)(apyhist)(4)](4+)/Nafion film on a glassy carbon electrode were characterized using cyclic voltammetry and square-wave voltammetry and showed high electrocatalytic activity toward the oxidation of dopamine (DA). The detection sensitivity was found to be enhanced by the use of copper(II) complex in the PNTs/Nafion films. Under the optimum conditions, the square-wave voltammetry peak height was linearly related to the DA concentration over two concentration intervals, viz., 5.0-40 μmol L(-1) and 40-1000 μmol L(-1). The detection limit was 2.80 μmol L(-1) (S/N = 3), and ascorbic acid did not interfere with the DA detection. These results suggested that this hybrid bioinorganic system provides an attractive advantage for a new type of electrochemical sensors. The detection sensitivity was found to be enhanced by use of PNTs.  相似文献   

7.
Water-soluble nano-C(60) can serve as a novel, effective, fluorescent sensing platform for biomolecular detection with high sensitivity and selectivity. In this paper, fluorescent detection of DNA and thrombin via nano-C(60) is demonstrated for the first time. The principle of the assay lies in the fact that the adsorption of the fluorescently labeled single-stranded DNA (ssDNA) probe by nano-C(60) leads to substantial fluorescence quenching. In the presence of a target, the biomolecular mutual interaction suppresses this quenching, signaling the existence of the target. This sensing system rivals graphene oxide but is superior to other carbon-structure-based systems. The present method can also achieve multiplex DNA detection and withstand the interference from human blood serum.  相似文献   

8.
Zong C  Ai K  Zhang G  Li H  Lu L 《Analytical chemistry》2011,83(8):3126-3132
An effective dual-emission fluorescent silica nanoparticle-based probe has been constructed for rapid and ultrasensitive detection of Cu(2+). In this nanoprobe, a dye-doped silica core served as a reference signal, thus providing a built-in correction for environmental effects. A response dye was covalently grafted on the surface of the silica nanoparticles through a chelating reagent for Cu(2+). The fluorescence of the response dye could be selectively quenched in the presence of Cu(2+), accompanied by a visual orange-to-green color switch of the nanoprobe. The nanoprobe provided an effective platform for reliable detection of Cu(2+) with a detection limit as low as 10 nM, which is nearly 2 × 10(3) times lower than the maximum level (~20 μM) of Cu(2+) in drinking water permitted by the U.S. Environmental Protection Agency (EPA). The high sensitivity was attributed to the strong chelation of Cu(2+) with polyethyleneimine (PEI) and a signal amplification effect. The nanoprobe constructed by this method was very stable, enabling the rapid detection of Cu(2+) in real water samples. Good linear correlations were obtained over the concentration range from 1 × 10(-7) to 8 × 10(-7) (R(2) = 0.99) with recoveries of 103.8-99.14% and 95.5-95.14% for industrial wastewater and lake water, respectively. Additionally, the long-wavelength emission of the response dye can avoid the interference of the autofluorescence of the biosystems, which facilitated their applications in monitoring Cu(2+) in cells. Furthermore, the nanoprobe showed a good reversibility; the fluorescence can be switched "off" and "on" by an addition of Cu(2+) and EDTA, respectively.  相似文献   

9.
Wang GL  Dong YM  Li ZJ 《Nanotechnology》2011,22(8):085503
Metal ion (Ag(+), Cd(2+), Zn(2+)) modified CdS quantum dots (QDs) were synthesized and used for Cu(2+) sensing. Modification by these metal ions could enhance the PL intensity of CdS QDs with the extent of the PL enhancement being related to the concentration of the metal ions. Different metal ion (Ag(+), Cd(2+), Zn(2+)) modified CdS QDs also showed different analytical characteristics for Cu(2+) sensing. In particular, Ag( + ) modified CdS QDs showed greatly enhanced sensitivity for Cu(2+) determination than did the unmodified CdS QDs. A limit of detection (LOD) of 2.0 × 10(-10) M was obtained for Ag(+) modified CdS QDs, which is the lowest LOD obtained using QDs as fluorescence probes for Cu(2+) sensing. This study demonstrates the important role of surface state of QDs in fluorescence sensing.  相似文献   

10.
Singly charged amines and sulfonic acids as cationic and anionic aliphatic model substances, respectively, were detected in capillary electrophoresis with all-solid-state ion-selective electrodes. The sensitivity for these compounds is a function of their lipophilicity. The signal detected is generally greater for molecules with a larger organic part. The utility of the method is further demonstrated by the detection of a group of aromatic compounds in the form of the anionic analgesics (S)-(+)-2-(4-isobutylphenyl)propionic acid, 2-[(2,6-dichlorophenyl)amino]benzeneacetic acid, and o-acetylsalicylic acid. Further determined were the artificial sweeteners cyclamate, acesulfame-K, and saccharin. Detection limits for the different substances were between 2.5 × 10(-)(6) and 1 × 10(-)(5) M.  相似文献   

11.
Li J  Fu HE  Wu LJ  Zheng AX  Chen GN  Yang HH 《Analytical chemistry》2012,84(12):5309-5315
In this work, we developed a simple and general method for highly sensitive detection of proteins and small molecules based on cyclic enzymatic signal amplification (CESA) and hairpin aptamer probe. Our detection system consists of a hairpin aptamer probe, a linker DNA, two sets of DNA-modified AuNPs, and nicking endonuclease (NEase). In the absence of a target, the hairpin aptamer probe and linker DNA can stably coexist in solution. Then, the linker DNA can assemble two sets of DNA-modified AuNPs, inducing the aggregation of AuNPs. However, in the presence of a target, the hairpin structure of aptamer probe is opened upon interaction with the target to form an aptamer probe-target complex. Then, the probe-target complex can hybridize to the linker DNA. Upon formation of the duplex, the NEase recognizes specific nucleotide sequence and cleaves the linker DNA into two fragments. After nicking, the released probe-target complex can hybridize with another intact linker DNA and the cycle starts anew. The cleaved fragments of linker DNA are not able to assemble two sets of DNA-modified AuNPs, thus a red color of separated AuNPs can be observed. Taking advantage of the AuNPs-based sensing technique, we are able to assay the target simply by UV-vis spectroscopy and even by the naked eye. Herein, we can detect the human thrombin with a detection limit of 50 pM and adenosine triphosphate (ATP) with a detection limit of 100 nM by the naked eye. This sensitivity is about 3 orders of magnitude higher than that of traditional AuNPs-based methods without amplification. In addition, this method is general since there is no requirement of the NEase recognition site in the aptamer sequence. Furthermore, we proved that the proposed method is capable of detecting the target in complicated biological samples.  相似文献   

12.
Lu W  Qin X  Liu S  Chang G  Zhang Y  Luo Y  Asiri AM  Al-Youbi AO  Sun X 《Analytical chemistry》2012,84(12):5351-5357
The present article reports on a simple, economical, and green preparative strategy toward water-soluble, fluorescent carbon nanoparticles (CPs) with a quantum yield of approximately 6.9% by hydrothermal process using low cost wastes of pomelo peel as a carbon source for the first time. We further explore the use of such CPs as probes for a fluorescent Hg(2+) detection application, which is based on Hg(2+)-induced fluorescence quenching of CPs. This sensing system exhibits excellent sensitivity and selectivity toward Hg(2+), and a detection limit as low as 0.23 nM is achieved. The practical use of this system for Hg(2+) determination in lake water samples is also demonstrated successfully.  相似文献   

13.
Luo Y  Liao F  Lu W  Chang G  Sun X 《Nanotechnology》2011,22(19):195502
Herein, coordination polymer nanobelts (CPNBs) were prepared rapidly and on a large scale, by directly mixing aqueous AgNO(3) solution and an ethanol solution of 4, 4'-bipyridine at room temperature. The application of such CPNBs as a fluorescent sensing platform for nucleic acid detection was further explored. CPNB is a π-rich structure, the strong π-π stacking interactions between unpaired DNA bases and CPNB leads to adsorption of fluorescently labeled single-stranded DNA (ssDNA) accompanied by 66% fluorescence quenching. However, the presence of target ssDNA will hybridize with the probe. The resultant helix cannot be adsorbed by CPNB due to its rigid conformation and the absence of unpaired DNA bases. Thus, a significant fluorescence enhancement, 73% fluorescence recovery, was observed in DNA detection as long as the target exists. The present system has excellent sensitivity; a substantial fluorescence enhancement was observed when the concentration of the target was as low as 5 nM. It also exhibits outstanding discrimination ability down to a single-base mismatch.  相似文献   

14.
Lin Z  Li X  Kraatz HB 《Analytical chemistry》2011,83(17):6896-6901
An unlabeled immobilized DNA-based sensor was reported for simultaneous detection of Pb(2+), Ag(+), and Hg(2+) by electrochemical impedance spectroscopy (EIS) with [Fe(CN)(6)](4-/3-) as redox probe, which consisted of three interaction sections: Pb(2+) interaction with G-rich DNA strands to form G-quadruplex, Ag(+) interaction with C-C mismatch to form C-Ag(+)-C complex, and Hg(2+) interaction with T-T mismatch to form T-Hg(2+)-T complex. Circular dichroism (CD) and UV-vis spectra indicated that the interactions between DNA and Pb(2+), Ag(+), or Hg(2+) occurred. Upon DNA interaction with Pb(2+), Ag(+), and Hg(2+), respectively, a decreased charge transfer resistance (R(CT)) was obtained. Taking advantage of the R(CT) difference (ΔR(CT)), Pb(2+), Ag(+), and Hg(2+) were selectively detected with the detection limit of 10 pM, 10 nM, and 0.1 nM, respectively. To simultaneously (or parallel) detect the three metal ions coexisting in a sample, EDTA was applied to mask Pb(2+) and Hg(2+) for detecting Ag(+); cysteine was applied to mask Ag(+) and Hg(2+) for detecting Pb(2+), and the mixture of G-rich and C-rich DNA strands were applied to mask Pb(2+) and Ag(+) for detecting Hg(2+). Finally, the simple and cost-effective sensor could be successfully applied for simultaneously detecting Pb(2+), Ag(+), and Hg(2+) in calf serum and lake water.  相似文献   

15.
Wu MS  Qian GS  Xu JJ  Chen HY 《Analytical chemistry》2012,84(12):5407-5414
We report an ultrasensitive wireless electrochemiluminescence (ECL) protocol for the detection of a nucleic acid target in tumor cells on an indium tin oxide bipolar electrode (BPE) in a poly(dimethylsiloxane) microchannel. The approach is based on the modification of the anodic pole of the BPE with antisense DNA as the recognition element, Ru(bpy)(3)(2+)-conjugated silica nanoparticles (RuSi@Ru(bpy)(3)(2+)) as the signal amplification tag, and reporter DNA as a reference standard. It employs the hybridization-induced changes of RuSi@Ru(bpy)(3)(2+) ECL efficiency for the specific detection of reporter DNA released from tumor cells. Prior to ECL detection, tumor cells are transfected with CdSe@ZnS quantum dot (QD)-antisense DNA/reporter DNA conjugates. Upon the selective binding of antisense DNA probes to intracellular target mRNA, reporter DNA will be released from the QDs, which indicates the amount of the target mRNA. The proof of concept is demonstrated using a proto-oncogene c-Myc mRNA in MCF-7 cells (breast cancer cell line) as a model target. The wireless ECL biosensor exhibited excellent ECL signals which showed a good linear range over 2 × 10(-16) to 1 × 10(-11) M toward the reporter DNA detection and could accurately quantify c-Myc mRNA copy numbers in living cells. C-Myc mRNA in each MCF-7 cell and LO2 cell was estimated to be 2203 and 13 copies, respectively. This wireless ECL strategy provides great promise in a miniaturized device and may facilitate the achievement of point of care testing.  相似文献   

16.
Label-free oligonucleotide sensors that use a change in the electrode kinetics of the redox reaction of the negatively charged Fe(CN)(6)(3-/4-) redox couple to signal the formation of a DNA duplex with a surface-conjugated probe nucleotide are investigated. Electrochemically active conducting polymers (ECPs) can advantageously be used both as the active electrode and as the means of surface conjugation of the probe nucleotide. Here, we demonstrate that the sensitivity of the detection of the surface-complementary oligonucleotide can significantly be improved, into the low nanomolar range, by forming the ECP as a highly porous, very rough layer by growing it using electrochemical polymerization on a microelectrode. In comparison, smoother surfaces formed on macroelectrodes had detection sensitivity in the low micromolar range. We propose Donnan exclusion of the redox couple from small pores as the reason for the enhanced sensitivity. We discuss the effects using a simple patch model for the electrochemical kinetics and use the model to derive the equilibrium binding constant and binding kinetic rate constants for the surface hybridization reaction. We use the electrochemically active copolymer of pyrrole (Py) and 3-pyrrolylacrylic acid (PAA) [poly(Py-co-PAA)] as the sensing electrode and binding surface and measure the surface hybridization-induced changes in electrode kinetics of Fe(CN)(6)(3-/4-) by electrochemical impedance spectroscopy.  相似文献   

17.
A fluorescence spectroelectrochemical sensor capable of detecting very low concentrations of metal complexes is described. The sensor is based on a novel spectroelectrochemical sensor that incorporates multiple internal reflection spectroscopy at an optically transparent electrode (OTE) coated with a selective film to enhance detection limits by preconcentrating the analyte at the OTE surface. Nafion was used as the selective cation exchange film for detecting Ru(bpy)(3)(2+), the model analyte, which fluoresces at 605 nm when excited with a 441.6-nm HeCd laser. The unoptimized linear dynamic range of the sensor for Ru(bpy)(3)(2+) is between 1 x 10(-)(11) and 1 x 10(-)(7) M with a calculated 2 x 10(-)(13) M detection limit. The sensor employs extremely thin films ( approximately 12 nm) without significantly sacrificing its sensitivity. The sensor response is demonstrated with varying film thicknesses. A state-of-the-art flow cell design allows variable cell volumes as low as approximately 4 microL. Fluorescence of the sample can be controlled by electromodulation between 0.7 and 1.3 V. Sensor operation is not reversible for the chosen model film (Nafion) and sample (Ru(bpy)(3)(2+)) but it can be regenerated with ethanol for multiple uses.  相似文献   

18.
To detect the target molecules, aptamers are currently focused on and the use of aptamers for biosensing is particularly interesting, as aptamers could substitute antibodies in bioanalytical sensing. So this paper describes the novel electrochemical system for protein in sandwich manner by using the aptamers and the scanning electrochemical microscope (SECM). For protein detection, sandwich system is ideal since labeling of the target protein is not necessary. To develop the electrochemical protein sensor system, thrombin was chosen as a target protein since many aptamers for it were already reported and two different aptamers, which recognize different positions of thrombin, were chosen to construct sandwich type sensing system. In order to obtain the electrochemical signal, the glucose oxidase (GOD) used for labeling the detection aptamers since it has large amount of stability in aqueous solution. One aptamer was immobilized onto the gold electrode and the other aptamer for detection was labeled with GOD for generation of the electric signal. Thrombin was detected in sandwich manner with aptamer immobilized onto the gold electrode and the GOD labeled aptamer. The enzymatic signal, generated from glucose addition after the formation of the complex of thrombin, was measured. The generation-collection mode of SECM was used for amperometric H2O2 detection.  相似文献   

19.
We have developed a fluorescence approach for the highly selective and sensitive detection of Pb(2+) ions using AGRO100, a G-quadruplex DNAzyme. The sensing strategy is based on Pb(2+) ions inducing increased DNAzyme activity of AGRO100 in the presence of hemin, which acts as a cofactor to catalyze H(2)O(2)-mediated oxidation of Amplex UltraRed (AUR). A test of eight aptamers of various sequences for the detection of Pb(2+) ions revealed that AGRO100 performed the best in terms of sensitivity. The AGRO100-AUR probe exhibited high selectivity (>100-fold) toward Pb(2+) ions over other tested metal ions. The fluorescence intensity (excitation/emission maxima, ca. 561/592 nm) of the AUR product was proportional to the concentration of Pb(2+) ions over the range 0-1000 nM, with a linear correlation (R(2) = 0.98). For 5 mM Tris-acetate (pH 7.4) solutions in the presence and absence of 100 mM NaCl, the AGRO100-AUR probe provided limits of detection (signal-to-noise ratio = 3) for Pb(2+) ions of 1.0 and 0.4 nM, respectively. We validated the practicality of the use of the AGRO100-AUR probe for the determination of the concentrations of Pb(2+) ions in soil samples. This approach allows the determination of the concentrations of Pb(2+) ions with simplicity, selectivity, and sensitivity.  相似文献   

20.
We have developed a simple paper-based colorimetric membrane for sensing lead ions (Pb(2+)) in aqueous solutions. The nitrocellulose membrane (NCM) was used to trap bovine serum albumin (BSA) modified 13.3-nm Au nanoparticles (BSA-Au NPs), leading to the preparation of a nanocomposite film of a BSA-Au NP-decorated membrane (BSA-Au NPs/NCM). The BSA-Au NPs/NCM operates on the principle that Pb(2+) ions accelerate the rate of leaching of Au NPs induced by thiosulfate (S(2)O(3)(2-)) and 2-mercaptoethanol (2-ME). The BSA-Au NPs/NCM allowed for the detection of Pb(2+) by the naked eye in nanomolar aqueous solutions in the presence of leaching agents such as S(2)O(3)(2-) and 2-ME. We employed the assistance of microwave irradiation to shorten the reaction time (<10 min) for leaching the Au NPs. Under optimal solution conditions (5 mM glycine-NaOH (pH 10), S(2)O(3)(2-) (100 mM), and 2-ME (250 mM), microwaves (450 W)), the BSA-Au NPs/NCM allowed the detection of Pb(2+) at concentrations as low as 50 pM with high selectivity (at least 100-fold over other metal ions). This cost-effective sensing system allowed for the rapid and simple determination of the concentrations of Pb(2+) ions in real samples (in this case, sea water, urine, and blood samples).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号