首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Drilling is the mostly used secondary machining of the fiber reinforced composite laminates, while the delamination occurs frequently at the drill exit in the workpiece. In the industrial experiences, core drill shows better drilling quality than twist drill. However, chip removal is a troublesome problem when using the core drill. Conventional compound core-special drills (core-special drills and step-core-special drills) are designed to avoid the chip removal clog in drilling. But the cutting velocity ratio (relative motion) between outer drill and inner drill is null for conventional compound core-special drills. The current study develops a new device and to solve the problems of relative motion and chip removal between the outer and inner drills in drilling CFRP composite laminates. In addition, this study investigates the influence of drilling parameters (cutting velocity ratio, feed rate, stretch, inner drill type and inner drill diameter) on thrust force of compound core-special drills. An innovative device can be consulted in application of compound core-special drill in different industries in the future.  相似文献   

2.
3.
Carbon fiber reinforced plastics (CFRPs) have many desirable properties, including high strength-to-weight ratio, high stiffness-to-weight ratio, high corrosion resistance, and low thermal expansion. These properties make CFRP suitable for use in structural components for aerospace applications. Drilling is the most common machining process applied to CFRP laminates, and it is difficult due to the extremely abrasive nature of the carbon fibers and low thermal conductivity of CFRP. It is a challenge for manufacturers to drill CFRP materials without causing any delamination on the work part while also considering the economics of the process. The subject of this study is the drilling of fabric woven type CFRP laminates which are known to be more resistant to delamination than unidirectional type CFRP laminates. The objective of this study is to investigate the influence of double point angle drill geometry on drilling performance through an experimental approach. An uncoated carbide and two diamond coated carbide drills with different drill tip angles are employed in drilling experiments of aerospace quality thick fabric woven CFRP laminates. Force and torque measurements are used to investigate appropriate drilling conditions based on drill geometry and ideal drilling parameters are determined. Tool life tests of the drills were conducted and the condition of the diamond coating is examined as a function of drilling operational parameters. High feed rate drilling experiments are observed to be favorable in terms of drill wear. Feed is observed to be more important than speed, and the upper limit of feed is dictated by the drill design and the rigidity of the machine drill. Hole diameter variation due to drill wear is monitored to determine drill life. At high feeds, hole diameter tolerance is observed to be more critical than hole exit delamination during drilling of fabric woven CFRP laminates.  相似文献   

4.
Various sizes of step drills were manufactured by a CNC grinder machine and used in the drilling process with different speeds and feed rates to produce single step holes in S1214 free machining steel. The performance of step drills was compared with that of conventional twist drills in the drilling of the free machining steel for the same task. The influences of drill size, feed rate and cutting speed on the performance of step drills were studied. Experimental results show that for better cutting performance, the small diameter should not be less than 60% of the large diameter. Also, most of the changes in the characteristics of the thrust force were influenced by the smaller drill of the step drill. On the other hand, the small diameter part of the step drill only contributed about 30% of the torque. From the experimental results, empirical equations for drilling thrust force and torque have been established for step drills.  相似文献   

5.
Performance evaluation of endrills   总被引:1,自引:0,他引:1  
This paper evaluates the performance of a relatively new type of drill called an endrill which is a cross between a drill and an endmill. Investigations into the effects of its cutting conditions on the drilling forces, surface finish, drill wear and hole oversize were carried out. It was found that endrills produced better quality holes than conventional twist drills, better surface finish and less oversize of the holes. Hence, with proper feed, speed and flow rate of the pressurized flushing coolant, a good finish of about Ra = 1 μm can be attained without reaming. Thus, the productivity of finished holes can be remarkably improved. Compared to twist drills, lower torque and thrust were observed which yielded improved tool life and reduced power consumption. No “walking phenomenon” was observed when this kind of drill was used and the amount of hole oversize was found to average about 0.7% of the drill diameter as compared to 1.6% when twist drills were used. Finally, general equations for the drill torque and thrust were derived from the experimental results.  相似文献   

6.
A study of a modified drill point design with plane rake faces for drilling high-tensile steels is presented. A geometrical analysis has shown that the modified drill point design yields positive normal rake angle on the entire lips and point relieving in the vicinity of the chisel edge. This drill geometry can be expected to reduce the cutting forces and torque, and hence reduce the possible drill breakages when drilling high-tensile steels. An experimental study of drilling an ASSAB 4340 high-tensile steel with 7–13 mm titanium nitride (TiN) coated high-speed steel (HSS) drills has shown that the modified drills can reduce the thrust force by as much as 46.9%, as compared to the conventional twist drills under the corresponding cutting conditions, while the average reduction of torque is 13.2%. Drill-life tests have also been carried out and confirmed the superiority of the modified drills over the conventional twist drills. In some cases, the conventional drills were broken inside the workpiece, while the modified drills performed very well under the same cutting conditions. To mathematically predict the drilling performance and optimise the drilling process using the plane rake faced drills, predictive models for the cutting forces, torque and power will be developed in the second part of this investigation.  相似文献   

7.
Removal of chips is a serious problem when core drill drilling polymer composites. As the chip is formed it moves to the inner hole of core drill. A hole is pre-drilled to eliminate the thrust caused by the removal chip, thus the threat for delamination is significantly reduced. The diameter of the pre-drilled hole is set equal to the inner hole of core drill. A smaller diameter of pilot hole cannot solve the problem of removal chips, while a larger one tends to cause undesired delamination during pre-drilling. Although valuable efforts have been made for the analysis of drilling-induced delamination, little has been reported on the effect of pilot hole diameter on delamination for core drills. The design of drill tools can be improved using obtained results.  相似文献   

8.
An unstable drilling process results from the insufficient supply of cutting fluid and bad chip removal as machining depth increases. These causes of unstable drilling lead to serious problems in micro-drilling. All drills were broken while drilling the first hole in the micro-deep-hole drilling of steel with an aspect ratio over 10, regardless of the cutting conditions. Peck drilling, which utilizes an intermittent feed, is widely used in drilling deep holes. Generally, the one-step feed-length (OSFL) of peck drilling is one and a half times longer than the drill diameter in conventional drilling. An OSFL between one half and twice the micro-drill diameter was used by some workers for micro-drilling. However, this range of OSFL was an arbitrary decision. This paper proposes the peck drilling method using thrust force signal monitoring. The monitoring parameters for peck drilling (MPPDs) are introduced through the analysis of thrust force in both the time and frequency domain. The monitoring system was embodied using LabVIEW. Through this monitoring system, the proper OSFL for stable machining in the deep-micro-hole drilling of steel was determined to be about a tenth of the tool diameter.  相似文献   

9.
In the aerospace industry, burr removal is an important and expensive part of the manufacturing process. One approach to minimizing burrs is to lower the thrust force in drilling through suitable modification of the drill geometry such as the use of step drills. This paper focuses on the modeling of thrust force and torque for step drills. A mechanistic model capturing the various material removal mechanisms, i.e. oblique cutting, orthogonal cutting, and indentation, active on different sections of the step drill is developed. Subsequently, a series of experiments is conducted to calibrate and validate the model. The validation results show that the predicted thrust and torque values are in good agreement with measured values, although the torque is slightly underestimated. The validated model was further used to investigate the effects of step drill geometry parameters on the thrust force and torque. The model predictions suggest that the thrust force increases and the torque decreases for larger secondary point angles and inner diameters.  相似文献   

10.
The drilling of holes with an l/d-ratio greater than 12 is responsible for a significant amount of the overall production time and therefore has a high impact on the productivity. In the past gun drills were used for those higher l/d-ratios, providing good surface qualities and straight holes. However the productivity of gun drills compared to solid carbide twist drills is very low, due to the limited feed rate. With the use of solid carbide twist drills with l/d-ratios up to 40 and overall lengths up to 350 mm production time can be reduced extensively. Solid carbide twist drills can furthermore be used on standard machine tools. Former drilling tests show that the tool life of these drilling tools decreases abundantly clear with an increasing tool length. This paper presents the influence of the drill length and the dynamic behaviour of the drilling process on the wear behaviour of the drilling tool.  相似文献   

11.
This paper presents a new approach for modelling the cutting forces and chatter stability limits in drills with arbitrary lip geometry. The oblique cutting geometry at each point on the drill lip is modelled using parametric curve equations. The cutting force and process damping coefficients at different parts of the drill lip are identified empirically; the cutting force coefficients are identified from non-symmetric drilling tests, and the process damping coefficients are identified from chatter-free orthogonal turning tests. The presented approach provides a practical method for modelling the cutting forces and vibration stability without needing the detailed geometry of drill lips. The accuracy of presented model in predicting lateral and torsional-axial chatter stability limits is verified by conducting drilling tests using drills with various edge geometries.  相似文献   

12.
朱林  朱晖晖 《机床与液压》2018,46(10):73-75
井下动力钻具是一种能把钻井液的能量转化为钻井破岩动力的钻具,它具有能量利用率高、钻进成本低等优点。在西方发达国家,井下动力钻具已被确定为定向井、丛式井、大斜度井、水平井和抢险救援井的最佳钻井工具之一。目前,井下动力钻具主要朝着低速大扭矩的方向发展。而现行的井下动力钻具中,涡轮钻具具有高速大扭矩的软特性,必须同减速器配合使用才能实现低速大扭矩钻井;螺杆钻具容易实现低速大扭矩钻井,但却不耐高温、高压;电动钻具结构过于复杂,目前已很少使用。通过对目前钻井过程的调查与研究,设计一种新型叶片钻具,它基于叶片马达的工作原理,利用叶片上的压差驱动转子转动且容易实现低速大扭矩钻井。  相似文献   

13.
This paper presents the automation of centered micro hole drilling, using a magnetically levitated table. Centered micro hole drilling, an example of which is nozzle outlet hole drilling, has previously been performed manually by skilled craftsmen. If a micro hole is drilled when the center line of the drill and the center line of the guide hole are not aligned, the misalignment may cause drill breakage. By using a magnetically levitated table, a workpiece can be aligned frictionlessly. When the horizontal support stiffness of the table is set small, by lowering the drill slowly, centering can be performed due to the contact force between the drill tip and the conical surface of the nozzle. Spinning nozzles were used as experimental workpieces, and 0.1–0.5 mm diameter drills were used.  相似文献   

14.
Various cutting techniques are available to drill holes, but drilling is the most common way in secondary machining of composite materials owing to the need for structure joining. Twist drills are widely used in the industry to produce holes rapidly and economically. Since the twist drill has a chisel edge, increasing the length of a chisel edge will result in an increase in the thrust force generated. Whereas, a saw drill has no chisel edge; it utilizes the peripheral distribution of the thrust force for drilling. As a result, the saw drill can achieve better a machining quality in drilling composite laminates than twist drill. The deviation of cutting edge that occurs in saw drill would result in an increase of thrust force during drilling, causing delamination damage when drilling composite materials in particular. A comprehensive model concerning delamination induced by the thrust force of a deviation saw drill during drilling composite materials has been established in the present study. For a deviation saw drill, the critical thrust force that triggers delamination increases with increasing β. A lower feed rate has to be used with an increasing deviation saw drill in order to prevent delamination damage. The results agree with real industrial experience. A guide for avoiding the drill deviation during drill regrinding or drill wear has been proved analytically by the proposed model, especially when the deviation ratio (β) affects the critical thrust force. This approach can be extended to examine similar deviation effects of various drills.  相似文献   

15.
用点胶-热压法制备了有序排布孕镶金刚石钻头,并用形貌仪观测了钻头的表面形态以及通过室内钻进实验研究其钻进性能。结果表明:在进尺数相同的情况下,有序排布钻头的钻进效率比随机排布钻头高出23%,有序排布钻头的金刚石颗粒出刃高度比随机排布钻头高出1倍;而且有序排布钻头的胎体磨损呈有利于金刚石颗粒自锐的蝌蚪状。有序排布的钻头金刚石表面出现微破碎,与随机排布钻头的2种金刚石极端磨损形貌相比,在钻进过程中优势明显。   相似文献   

16.
The purpose of this work is to present the development and experimental performance assessment of a new generation of spade drill bits. Rigorous point geometry and drilling force models that describe the topology of the drill and its cutting behaviour have guided the development of these new drills with unique topological features. It is shown, both analytically through simulations and through a systematic experimental study, that the performance of the newly developed topologies exceeds that of the commercially available designs. The new spade bits yield lower thrust and torque over the whole range of pragmatic operating conditions.  相似文献   

17.
Aluminium alloys, though widely used in the automotive industry, are difficult to machine, particularly by drilling and tapping without the use of metal removal fluids, because of aluminium's strong tendency to adhere to the cutting tool. Tribological tests have revealed that carbon-based tool coatings, such as diamond-like carbon (DLC), promise an improved performance due to their low friction and adhesion. However, the tribological performance of DLC coatings depends on both their hydrogen content and the testing environments. Hence the experimental approach taken in this study was designed to understand the cutting performance of hydrogenated DLC (H-DLC) and non-hydrogenated DLC (NH-DLC) tool coatings during the dry drilling of a 319 Al (Al–6%Si) alloy. An experimental drilling station was built to measure torque and thrust force changes using a cutting speed of 2500 rpm and a feed rate of 0.25 mm/rev. The cutting performance was assessed by measuring the torques and thrust forces generated during the drilling of the first 150 holes or by drill failure—depending on which occurred first. The results indicated that superior cutting performance was achieved, in both torque and thrust force responses, using DLC-coated drills rather than uncoated high-speed steel (HSS) drills. The uncoated HSS drills failed after drilling only 49 holes as a result of excessive aluminium adhesion. At least 150 holes could be drilled using the DLC-coated drills, and both the torque and thrust forces generated during drilling were lower than those with uncoated HSS drills. In addition, a smaller proportion of holes exhibited abrupt increases in torque (at the end of the drilling cycle) during drilling with the DLC-coated drills. Scanning electron microscopy (SEM) investigations showed that the H-DLC drill flutes displayed minimal aluminium clogging—resulting in lower torque. H-DLC coating also diminished metal transfer and buildup edge formation on the drill's flank face and cutting edge. Thus, torque and thrust force measurements, supported by metallographic data, indicated that H-DLC-coated drills provided better dry drilling performance than NH-DLC.  相似文献   

18.
The conditions of the coolant flow through the inlet annular channels, machining zone and outlet channels of self-piloting drills were investigated. Experiments were performed on B.T.A. and Ejector drills to determine the influence of the drill design parameters on the flow parameters. The influence of the inlet channel's clearance and eccentricity on the pressure distribution and energy loss was analytically examined. Experimental investigations of the static and dynamic pressure distribution of the cutting fluid in the machining zone were performed with different drill heads. Conditions for reliable chip removal from the machining zone and the boring bar were defined. The results obtained constitute a reference for designers of self-piloting drills and drilling processes.  相似文献   

19.
This paper investigates the optimization of twist drill point geometries in order to minimize thrust and torque in drilling. A point geometry parameterization based on the drill grinding parameters is used to ensure manufacturability of the optimized geometry. Three commonly used drill point geometries, namely, conical, Racon® and helical, are optimized for drilling forces while maintaining the inherent characteristics of each of the profiles. A significant reduction is shown in the drilling forces for the optimized drills. Drills with the optimized conical point profile are produced and tests run to validate the reduction in thrust and torque.  相似文献   

20.
Drilling operation is fundamental in the manufacturing industry to drill holes especially in sheet metal parts. This paper presents a mathematical model for correlating the interactions of some drilling control parameters such as speed, feed rate and drill diameter and their effects on some responses such as axial force and torque acting on the cutting tool during drilling by means of response surface methodology. For this exercise, a three-level full factorial design was chosen for experimentation using a PC-based computer numerically controlled drilling machine built in-house. The significance of the mathematical model developed was ascertained using Microsoft Excel® regression analysis module. The results obtained show that the mathematical model is useful not only for predicting optimum process parameters for achieving the desired quality but for process optimization. Using the optimal combination of these parameters is useful in minimizing the axial force and torque of drilling operations; by extension, other drilling parameters such as cutting pressure, material removal rate, and power could be optimized since they depend on the combination of drilling parameters which affect the axial force and torque.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号