首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
电力系统负荷预测是近年来各国潜心研究的一个新领域,对于电力系统的规划、运行和经济效益都有重要的意义。利用各种算法和模型对电力系统负荷进行预测是一种常用而且非常有效的方法。为此,在研究电力负荷预测算法的基础上用MATLAB进行编程仿真,得到预测结果后分析预测结果,并利用真实数据进行预测。  相似文献   

2.
基于改进BP神经网络算法的短期负荷预测   总被引:2,自引:0,他引:2  
分析了BP神经网络的特点,从学习速率的角度讨论了BP算法的改进方法,并用加州负荷数据进行24h负荷预测及算例分析.仿真结果表明,改进BP神经网络算法预测的平均误差比常规算法降低了0.445%,并且克服了当接近最优解时易产生波动和振荡现象的问题,训练速度也有所提高.  相似文献   

3.
讨论如何利用人工神经网络进行电力系统短期负荷预测。研究结果表明:基于BP神经网络的短期电力负荷预测具有精度高的特点,符合预测结果的相对误差小于3.06%。  相似文献   

4.
基于时间序列和神经网络的电力系统负荷预测   总被引:7,自引:0,他引:7  
针对采用时间序列对电力系统负荷进行预测时,无法考虑温度变化等因素的影响,利用神经网络的非线性拟合能力,提出了一种基于时间序列和神经网络组合的电力系统负荷预测方法。在时间序列法中,通过大量的历史数据随机序列对负荷进行预测,对于其结果再通过神经网络进行修正,算例表明所提方法是可行而有效的。  相似文献   

5.
提出了一种基于小波系数和BP神经网络相结合的电力系统短期负荷预测新方法。把过去直接对负荷序列的预测替代为对小波系数的预测,并对小波细节系数作分层软阈值处理。详细介绍了小波系数结合BP神经网络进行预测的新方法,并给出算例验证。  相似文献   

6.
短期电力负荷预测是电力系统运行调度中一项非常重要的内容,它是保证电力系统安全经济运行和实现电网科学管理及调度的重要方面,是能量管理系统(EMS)的组成部分,也是今后进行电网商业化运营所必需的基本内容.  相似文献   

7.
基于遗传算法和BP神经网络的短期电力负荷预测   总被引:1,自引:0,他引:1  
根据电力负荷的主要影响因素,考虑时间和天气,建立了基于遗传算法和反向传播神经网络(BP)的短期负荷预测.从BP神经网络的理论入手,采用遗传算法优化BP神经网络的初始权值和隐层节点数,从而避免了神经网络结构确定和初始权值选择的盲目性,提高了神经网络用于电力系统短期负荷预测的效率和精度使得负荷预测在更加合理的网络结构上进行.  相似文献   

8.
基于模式识别和神经网络的电力系统短期负荷预测   总被引:6,自引:3,他引:3  
当制定发电机组的启停计划和负荷管理计划时,对未来24h内的短期负荷预测是很必要的,精确的负荷预报能大大提高电力系统管理水平.本文介绍一种基于模式识别理论构造的人工神经网络,应用于电力系统短期负荷预测的方法.  相似文献   

9.
提出了一种改进的BP神经网络学习算法,并将其应用于短期电力负荷预测中,通过采用基于响应函数输出限幅和自适应调整学习率等措施,来提高神经网络本身的效率和精度,仿真结果验证了改进措施的有效性,取得了满意的预测结果.  相似文献   

10.
人工神经网络应用于电力负荷预测是目前广泛研究的一个课题。本文首先介绍了人工神经网络在负荷预测中的应用概况,进而分析了BP神经网络原理、模型及算法,建立了负荷预测模型,并配置了网络的相关参数。进而对某地区一天的整点负荷进行预测,根据负荷预测得到的数据.经过Matlab仿真得到了负荷预测值与实际值的曲线,验证了BP神经网络应用于短期负荷预测满足一般精度的要求。  相似文献   

11.
电力系统负荷预测的精度将直接影响电力系统的经济效益和用电的安全和稳定,短期电力负荷预测的重要组成部分.利用人工神经网络可以任意逼近非线性系统的特性,将其用于短期负荷预测.该文研究了在改进的BP网络中加入了动量项和构建输入网络时结合了同类型日思想的模糊映射,预测结果表明比标准BP算法具有更好的性能.同时,针对大量无法用精...  相似文献   

12.
提出了基于粒子群优化算法—Elman神经网络的电力系统短期负荷预测模型,采用具有动态递归性能的Elman神经网络,可增强负荷预测模型的联想和泛化推理能力,保证负荷预测的精度。采用粒子群优化算法对Elman神经网络进行学习训练,可充分利用粒子群优化算法的全局寻优性能,克服常规学习算法易于陷入局部最优解、收敛速度慢、编程复杂等缺陷。通过对地区电网负荷系统的实例仿真证实了所提出方法的有效性,获得了较满意的预测精度,平均绝对误差和最大相对误差分别达到1.988%和4.673%。为该模型用于实际工程取得了有效的进展。  相似文献   

13.
针对传统的BP算法易陷入局部极小点,收敛速度慢,编程复杂等缺点,本文提出基于分布估计算法的对角递归神经网络的短期负荷预测模型。该模型采用分布估计算法对对角递归神经网络进行优化,仿真结果表明,该预测模型平均绝对误差降低1.097%,最大相对误差降低2.55%,该模型获得较满意的预测精度,具有较高的预测稳定性和较好的适应能力。  相似文献   

14.
基于混沌分析的BP神经网络模型及其在负荷预测中的应用   总被引:5,自引:1,他引:5  
结合混沌分析理论和BP神经网络,提出在混沌相空间建立BP神经网络模型。运用混沌方法构成训练样本及确定神经网络的网络结构,用神经网络拟合相空间相点演化的非线性关系。并利用该模型对具混沌特性的电力系统日负荷时间序列进行短期预测,对比了标准BP网络模型和混沌线性回归模型的预测结果,结果表明基于混沌分析的BP神经网络模型的预测精度较高。  相似文献   

15.
灰色预测模型被广泛运用于电力负荷预测中,取得了较好的效果,但是灰色预测模型在实际应用中的缺点和局限性导致其预测精度有待提高,存在改进的必要。本文对于灰色预测模型的改进,分别从优化初值和改进模型等方面进行,从而提高普通灰色GM(1,1)模型的预测精度。对初值的处理可以削弱异常值的影响,强化趋势,从而避免由于初值选择不当而造成预测误差。本文中对模型的改进主要通过建立等维新息预测模型、灰色粒子群组合预测模型和灰色BP神经网络组合预测模型来实现。通过这些对灰色预测模型的修正和改进,进一步提高了灰色预测模型的适用性.最大限唐妯提高了灰乍.GM(1,1)模型的预测精唐.  相似文献   

16.
精确的负荷预测对电力定价、实时负荷调整起着十分重要的作用.提出利用径向基函数神经网络模型,通过采用混沌时间序列的方法,对大同地区的全网用电负荷数据进行了短期预测验证.通过数据预处理产生混沌序列,进而通过相空间参数完成了相空间重构.最后通过RBF网络预测得到了相应的预测值,并与实际值进行了对比.结果表明:得到的预测结果与实际结果几乎重合,证明了该方法的高度预测能力与适应能力.  相似文献   

17.
以供热系统为研究对象,针对集中供热热负荷中由于温度因素、随机因素以及建筑本身因素等导致预测精度不高的问题.提出了采用BP神经网络算法来进行预测,它对具有非线性的模型有很好的控制效果,并且可以进行自我学习.但由于BP神经网络的波动较大,比较容易出现局部优化现象,因此在使用BP神经网络的基础上进行改进,将BP神经网络与遗传优化算法相结合,弥补BP神经网络的不足.最后通过仿真实验,结果表明热负荷预测的误差大大减少,预测精度提高,继而实现合理供热.  相似文献   

18.
电力系统短期负荷预测是电力生产部门的重要工作之一,本文利用径向基函数网络(RBF)进行负荷预测,针对RBF在负荷预测中隐含层节点数难求问题,提出了一种改进的最近邻聚类学习算法即可解决该难点,又可提高RBF神经网络收敛速度和负荷预测精度.根据某地区电网的实例进行研究,结果发现本文算法比改进前的算法预测的最小、最大相对误差分别减小0.14和1.12,证明了改进后算法有效性和可行性,为电力系统负荷预测提供了一种新途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号