首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline monoclinic and cubic Gd2O3:Eu with different Eu^3 concentration were prepared using glycinenitrate combustion synthesis. By changing the ratio of glycine to nitrate and proper heat treatment, pure monoclinic and cubic Gd203:Eu with particle size less than 40 nm can be easily formed. Under ultraviolet excitation, main emission of Eu^3 (^5D0→^7F2) locates at 624 nm in monoclinic Gd2O3:Eu and 611 nm in cubic sample, In excitation spectrum two broad bands corresponding to the host absorption and charge transfer state (CTS) and f-f transitions of Gd^3 and Eu^3 were observed and discussed. The quenching concentration of monoclinic and cubic Gd2O3:Eu is 10% and 15 %, respectively,both of which are much higher than that of bulk Gd2O3 : Eu.  相似文献   

2.
Cubic and monoclinic Gd2O3:Eu3+ phosphors in the range of nano-scale and submicron-scale were prepared by a modified solution combustion method.Coexistence of cubic and monoclinic phases was found in the highest luminescent sample synthesized at 600 oC.In relation to commercial sample,the relative luminescence intensity was 49.8%.The shape of emission spectrum of the sample thus changed and the charge-transfer-state band of excitation spectrum slightly shift toward higher energies.With increasing the anneal...  相似文献   

3.
Nanocrystalline cubic Y2O3:Eu were prepared by combustion reaction.The crystal structure and morphology were analyzed by means of X-ray diffraction(XRD) and transmission electron microscopy(TEM).The luminescent properties of the powder were investigated.The charge transfer band position showed redshift from 241 to 251 nm,which was related to the change of the local surroundings of Eu3+ ions in nanocrystalline Y2O3:Eu.The ground-state electronic structure and charge transfer transition of both the bulk and nanocrystalline cubic Y2O3:Eu crystals were calculated by the ab initio self-consistent relativistic DV-Xα(discrete variational Xα) method.A complete 35-ion cluster was selected to simulate the local coordination surroundings of Eu doped in Y2O3 bulk crystals while five additional incomplete clusters were also selected to simulate the local surroundings of Eu ions in nanocrystals.It could be found that the charge transfer energies of the nanocrystalline Y2O3:Eu were less than that of the bulk counterpart,which was consistent with the redshift phenomenon of the CT band in the excitation spectrum of the nanocrystalline Y2O3:Eu.  相似文献   

4.
Under 980 nm laser excitation,red emission(5D0-7FJ(J=0,1,2)) of Eu3+ was observed in cubic Y2O3 codoped with Eu3+ and Yb3+.The dependence of the upconverted emission on doping concentration and laser power was studied.Yb3+ emission around 1000 nm(2F5/2-2F7/2) was reported upon excitation of Eu3+ ions.The decay curves of 5DJ(J=0,2) emission of Eu3+ under excitation of 266 nm pulse laser were examined to investigate the Eu3+→Yb3+ energy transfer process.Cooperative energy transfer process was discussed as the possible mechanism for the visible up-conversion luminescence of Eu3+ and near-infrared down-conversion emission of Yb3+.  相似文献   

5.
Eu3+-doped (Y,Gd)NbO4 phosphor was synthesized by solid-state reaction for possible application in cold cathode fluorescent lamps. A broad absorption band with peak maximum at 272 nm was observed which was due to the charge transfer between Eu3+ ions and neighboring oxygen anions. A deep red emission at the peak wavelength of 612 nm was observed which could be attributed to the 5D0→7F2 transition in Eu3+ ions. The highest luminance for Y1-x-yGdyNbO4:Eux3+ under 254 nm excitation was achieved at Eu3+ concentration of 18 mol.% (x=0.18) and Gd3+ concentration of 8.2 mol.% (y=0.082). The luminance of Y0.738Gd0.082NbO4:Eu3+0.18 was higher than that of a typical commercial phosphor Y2O3:Eu3+ and the CIE chromaticity coordinate was (0.6490, 0.3506), which was deeper than that of Y2O3:Eu3+. The particle size of the synthesized phosphors was controlled by the NaCl flux and particle size as high as 8 μm with uniform size distribution of particles was obtained.  相似文献   

6.
7.
Eu3+ doped Gd2WO6 and Gd2(WO4)3 nanophosphors with different concentrations were prepared via a co-precipitation method. The structure and morphology of the nanocrystal samples were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The emission spectra and excitation spectra of samples were measured. J-O parameters and quantum efficiencies of Eu3+ 5D0 energy level were calculated, and the concentration quenching of Eu3+ luminescence in different matrixes were studied. The results indicated that effective Eu3+:5D0-7F2 red luminescence could be achieved while excited by 395 nm near-UV light and 465 nm blue light in Gd2WO6 host, which was similar to the familiar Gd2(WO4)3:Eu. Therefore, the Gd2WO6:Eu red phosphors might have a potential application for white LED.  相似文献   

8.
Eu^3+-doped Gd2Mo3O9 was prepared by solid-state reaction method using Na2CO3 as flux and characterized by powder X-ray diffractometry. According to X-ray diffraction, this material belonged to a tetragonal system with space group I41/α. The effects of flux content and sintering temperature on the luminescent properties were investigated with the emission and excitation spectra. The results showed that flux content and sintering temperature had effects on the luminescent properties, the optimized flux content and the best temperature was 3 % and 800 ℃ respectively. The excitation and emission spectra also showed that this phosphor could be effectively excited by C-T band (280 nm), ultraviolet light 395 nm and blue light 465 nm. The wavelengths at 395 and 465 nm were nicely fitting in with the widely applied output wavelengths of ultraviolet or blue LED chips. Integrated emission intensity of Gd2Mo3O9 : Eu was twice higher than that of Y2O2S : Eu^3 + under 395 nm excitation. The Eu^3+ doped Gd2Mo309 phosphor may be a better candidate in solid-state lighting applications.  相似文献   

9.
Single phase of BaGd0.9-xMxEu0.1B9O16 (M=Al or Sc, 0≤x≤0.3) powder was prepared by the solid-state reaction and its photoluminescence (PL) properties were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation. Monitored with 613 nm emission, the excitation spectra of BaGd0.9-xMxEu0.1B9O16 consisted of three broad bands peaking at about 242, 208, and 142 nm, respectively. The one at about 242 nm originated from the charge transfer band (CTB) of O2-→Eu3+. The other two were assigned to the absorption of the host, which was overlapped with absorptions among borate groups, f→d transition of RE3+ (RE=Gd, Eu), and the charge transfer transition of O2-→Gd3+. The maximum emission peak was observed at about 613 nm in the emission spectra of BaGd0.9-xMxEu0.1B9O16 under both 254 and 147 nm excitation, which originated from the electric dipole 5D0→7F2 transition of Eu3+. When excited with 254 nm, the integral emission intensity of Eu3+ increased after Al3+ or Sc3+ substituting Gd3+ partly in BaGd0.9Eu0.1B9O16. Under 147 nm excitation, the integral emission intensity of Eu3+ decreased after some Gd3+ was replaced by Sc3+, but increased after adding appropriate Al3+ into BaGd0.9Eu0.1B9O16.  相似文献   

10.
Y2O3: Eu nanocrystals were synthesized by EDTA complexing sol-gel process at a relatively low temperature, in which ethylen-diamine-tetraacetic acid (EDTA) and polyethylene glycol (PEG) were used as the chelating agent and polymerization agent respectively. Formation process of Y2O3:Eu and structure characterization were carried out by TG-DTA, XRD, SEM/EDX. The results show that pure cubic phase Y203: Eu nanocrystalsere is produced after the precursor calcinated at 600℃ for 2 h, and the crystallinity increases with increasing calcination temperature. The nanoparticles of the Y2O3: Eu are basically spherical in shape. The mean particle size increases from about 30 to 70 nm when the calcination temperature increases from 600 to 1000℃. The luminescent properties of phosphor were analyzed by measuring the excitation and emission spectra. The main emission peak of the sample is around 612 nm, resulting in a red emission. The emission intensity increases with the calcination temperature. Compared with microsized Y2O3: Eu phosphors prepared by a conventional method, nanosized Y2O3: Eu synthesized by the present work, gives and a clear red shift in the emission spectrum. Moreover, the quenching concentration of Eu is raised.  相似文献   

11.
Eu2+-doped K2 Mg Si3O8 phosphors were synthesized by conventional solid-state reaction method. The phase formation of as-prepared samples was characterized by X-ray powder diffraction. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve and CIE coordinates. The phosphor showed bluish-green emission centered at 460 nm under the excitation of UV and near UV light with the wavelength range of 250–430 nm. Two Eu2+ emission centers existed in the K2 Mg Si3O8:Eu2+ phosphor according to the luminescence spectra and the decay curves. The critical quenching concentration of Eu2+ doping was determined to be 3.0 mol.% and the concentration quenching mechanism was dipole-dipole interactions between Eu2+ ions. These results suggested that K2 Mg Si3O8:Eu2+ was a potential bluish-green phosphor candidate for white UV-LED.  相似文献   

12.
YVO4:Eu nanocrystalline phosphors were successfully prepared at 400 oC in equal moles of NaNO3 and KNO3 molten salts. NaOH concentration and annealing temperature played important roles in phase purity and crystallinity of the nanocrystallines, and the optimum NaOH concentration and annealing temperature were 6:40 and 400 oC, respectively. The nanocrystallines were well crystallized with a cubic morphology in an average grain size of 18 nm. Upon excitation of the vanadate groups at 314 nm, YVO4:Eu nanocrystallines exhibited the characteristic emission of Eu3+, which indicated that there was an energy transfer from vanadate groups to Eu3+. Moreover, the influence of superficial effect, especially the dangling bonds on the structure and luminescent properties of the nanocrystallines was discussed in detail.  相似文献   

13.
Gd2O3 thin films as high-κ gate dielectrics were deposited directly on Si(001) substrates by magnetron sputtering at a pressure of 1.3 Pa and different temperatures. X-ray diffraction results revealed that all the films grown from 450 to 570 ℃ were crystalline, and the Gd2O3 thin films consisted of a mixture of cubic and monoclinic phases. The growth temperature was a critical parameter for the phase constituents and their relative amount. Low temperature was favorable for the formation of cubic phase while higher temperature gave rise to more monoclinic phase. All the Gd2O3 thin films grown from different temperatures exhibited acceptable electrical properties, such as low leakage current density (JL) of 10-5 A/cm^2 at zero bias with capacitance equivalent SiO2 thickness in the range of 6-13 nm. Through the comparison between films grown at 450 and 570 ℃, the existence of monoclinic phase caused an increase in JL by nearly one order of magnitude and a reduction of effective dielectric constant from 17 to 9.  相似文献   

14.
Single phases of LnAlO3 : Eu^3 ( Ln = Gd, Y ) were obtained by the process of evaporation of their nitric acid solution, and then pyrolysis of their nitrate salts. On monitoring by 613 nm emission, broad bands at around 270 and 170nm were observed in the excitation spectrum of Gd0.95Eu0.05AlO3. These peaks could be assigned to charge transfer (CT)transitions of Eu^3 -O^2- and Gd^3 -O^2- respectively. All the transitions observed in Gd0.95Eu0.05AlO3 are faithfully reproduced in the Y0.95Eu0.05AlO3, but with an exception of the ^8S7/2→^6I11/2 transition of Gd^3 . The 153 nm broad band could be the CT transition of Y^3 -O^2 - . Accordingly, the efficiency luminescence of (Gd, Y) BO3 : Eu^3 was explained as a result of CT transitions of Gd^3 -O^2- and Y^3 -O^2- under 147 nm excitation. Under VUV excitation, Gd0.95Eu0.05AlO3 exhibits a bright red luminescence with CIE chromaticity coordinates of (0.623, 0. 335) with a PL intensity of 30 of the commercial phosphor (Gd, Y) BO3 : Eu^3 (KX-504A). The PL spectrum of Y0.95Eu0.05AlO3 is similar to that of Gd0.95Eu0.05AlO3. Calculation of the color coordinates gives x = 0. 636, y = 0. 340 with a PL intensity of 50 of the (Gd, Y) BO3 : Eu^3 ( KX-504A) for Y0.95Eu0.05AlO3, and confirms that it has the appearance of pure spectral red, corresponding approximately to 608 nm. It can be concluded that LnAlO3:Eu^3 is a promising red VUV phosphor.  相似文献   

15.
With the pretreatment of pyrolysis, the uni-form, smooth, dense and crack free Gd203:Eu^3 films were obtained by sol-gel process without shielding at mosphere. Atomic force microscopy (AFM), X-ray diffraction (XRD), Ellipsometry, transmission, photoluminescence and X-ray excited emission were applied to study to the surface morphology, structure,thickness and optical properties of the films. The resuits show that the films are made up of grains with cubic structure in average size about 22 nm. With 21 times reproducible spin coating and pyrolysis treatment, the thickness of the film could reach to 792 nm and the transmittance of the film in visible region is above 90%. Two peaks at 223 and 250 nm are found in excitation spectra, which correspond to host lattice(HL) excitation and charge transfer (CT) excitation,respectively. Meanwhile, the main peak relates to HLexcitation which is contrary to that of Gd203:Eu^3 powder. This phenomenon will be beneficial to radioluminescence. The emission spectra show that the main peak located at 611 nm could be excited either by UV or X-ray, which correspond to ^7F2→5D0 transition in Eu3 ions. The luminescence intensity at 10 ms is only 10^-4 time of that at 10 tLs, which means that the afterglow in Gd203:Eu^3 films is insignificant for X-ray imaging.  相似文献   

16.
A barium-phosphate glass matrix was co-doped with Sn O and Eu2O3 for investigating on material luminescent properties. Optical absorption and X-ray photoelectron spectroscopy(XPS) were employed in the characterization of tin species. The prevalence of divalent tin was indicated by the XPS data in accord with a conspicuous absorption band detected around 285 nm ascribed to twofold-coordinated Sn centers(isoelectronic with Sn2+). Photoluminescence(PL) excitation spectra obtained by monitoring Eu3+ emission from the 5D0 state revealed a broad excitation band from about 250 to 340 nm, characteristic of donor/acceptor energy transfer. Under excitation of such at 290 nm, the co-doped material exhibited a bright whitish luminescence, and a four-fold enhanced Eu3+ emission relative to a purely Eu-doped reference. Time-resolved PL spectra recorded under the excitation at 290 nm exposed a broad band characteristic of the twofold-coordinated Sn centers and emission bands of Eu3+ ions, which appeared well separated in time in accord with their emission decay dynamics. The data suggested that light absorption took place at the Sn centers(donors) followed by energy transfer to Eu3+ ions(acceptors) which resulted in populating the 5D0 emitting state. Energy transfer pathways likely resulting in the enhanced Eu3+ photoluminescence and the consequential light emission were discussed.  相似文献   

17.
Gd2O3:Ho3+,Yb3+ nanocrystals were synthesized via solvothermal method.X-ray diffraction(XRD),transmission electron microscopy(TEM),absorption and upconversion spectra were employed to characterize the synthesized nanocrystals.The results of XRD and TEM showed that obtained Gd2O3:Ho3+,Yb3+ nanocrystals were cubic in crystal structure and uniform spherical in morphology.The average crystallite size was calculated to be 7.5 nm.Green and red up-conversion emissions corresponding to(5F4,5S2)→5I8 and 5F5 → 5I8 transition were observed upon 980 nm excitation at room temperature.The results indicated that both green and red luminescence were based on the two-photon processes.Laser power and doping concentration dependence of the upconverted emissions were studied to understand the upconversion mechanisms.Excited state absorption and energy-transfer processes were discussed as the possible mechanisms for the visible emissions.  相似文献   

18.
Yttrium oxide doped with europium has a great prospective for FED and PDP phosphor application. In present study, the precursor of yttrium oxide hydroxide nitrate nanorod, which was prepared via hydrothermal reaction route using PEG-6000 as template from the starting Y(NO3)3 and KOH reactant system, was used to prepare Y2O3:Eu3 nanorod via a post annealing process during which the precursor with adjustable shape and size was transformed to final Y2O3:Eu3 product. XRD, field emission scanning electron microscopy (FE-SEM) and photoluminescence spectra (PL) were used to characterize the crystalline, morphology and luminescence properties of as-formed Y2O3:Eu3 products synthesized at different post annealing temperatures, respectively. The results indicate that grain morphology of obtained Y2O3:Eu3 product was nanorod with a mean diameter of about 40~60 nm and length of about 500~700 nm, the nanorod structure and morphology of obtained Y2O3:Eu3 product maintained during post annealing process and the size varied slightly with different annealing temperatures. Pure cubic Y2O3:Eu3 phase was formed and the size was the smallest at annealing treatment of 500 ℃. Under the annealing temperature below 500 ℃ its diameter increased with increasing annealing temperature, and remained in a stable size when the annealing temperature was above 500 ℃. The PL spectra of excitation spectra of Y2O3:Eu3 product show that it exhibits excitation band located at about 395 and 468 nm, respectively. Above two excitation bands could be ascribed to the transition 4f-4f of Eu3 ions in the Y2O3 host. On the other hand, the main emission peaks of the as-prepared products could be ascribed to the Eu3 ions transition from 5D0 to 7F2. Furthermore, the luminescent intensity was improved about three times when the annealing temperature increased from 500 to 1000 ℃.  相似文献   

19.
Preparation and Luminescent Properties of BAM Blue Phosphor forPDP and CCFL   总被引:3,自引:0,他引:3  
The Bax-0.05MgAl10O16 x :Eu0.05^2 (0.88≤ x≤ 1.02) phosphors with different Ba^2 content and the Ba0.85MgAl10O16.94:Eu0.05^2 phosphors with different fluxes (BaF2, MgF2, AlF3, BaCl2, MgCl2, AlCl3, H3BO3)were prepared by high temperature solid-state reaction method and their luminescence characteristics were studied under 254 nm excitation and vacuum ultraviolet (VUV) excitation. With the increase of the Ba^2 content, there is an increase in the emission intensity, and when x = 0.94, it reaches a maximum. Then, as the Ba^2 content increases, the emission intensity slowly falls. The fluorides have better flux-effects than chlorides and H3BO3. The possible mechanism in the process of particle growth was discussed when fluorides were used as fluxes. The effect of the activator concentration on this system was also investigated. The quenching concentration is 0.13 mol in per mole host.  相似文献   

20.
The Gd2O2CO3:Eu^3+ with type-Ⅱ structure phosphor was successfully synthesized via flux method at 400 ℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO3^2- host absorption and charge transfer (CT) of Gd^3+-O2^- were observed for Gd2O2CO3:Eu^3+. Under 172 nm excitation, Gd2O2CO3:Eu^3+ exhibited strong red emission with good color purity, indicating Eu^3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu^3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu^3+ excited by 172 nm for Gd2O2CO3:Eu^3+ was about 5%. Gd2O2CO3:Eu^3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号