首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Zhang K  Farahbakhsh K 《Water research》2007,41(12):2816-2824
The efficacy of a conventional activated sludge wastewater treatment process and the membrane bioreactor technology in removing microbial pathogens was investigated. Total and fecal coliforms and somatic and F-specific coliphages were used as indicators of pathogenic bacteria and viruses. Up to 5.7 logs removal of coliforms and 5.5 logs of coliphages were observed in the conventional treatment process with advanced tertiary treatment. Addition of chemical coagulants seemed to improve the efficacy of primary and secondary treatment for microorganism removal. Complete removal of fecal coliforms and up to 5.8 logs removal of coliphages was observed in the MBR system. It was shown that the MBR system was capable of high removal of coliphages despite the variation in feed coliphage concentrations. The results of this study indicated that the MBR system can achieve better microbial removal in far fewer steps than the conventional activated sludge process with advanced tertiary treatment. The final effluent from either treatment processes can be potentially reused.  相似文献   

2.
The aim of this study was to investigate variations in the occurrence and removal of enterovirus and norovirus genomes, Giardia cysts, Cryptosporidium oocysts and the most commonly used faecal indicators in a Swedish wastewater pilot plant. Paired samples were taken from the inlet and outlet of each treatment line: tertiary filtration, membrane bioreactor (MBR) and upflow anaerobic sludge blankets (UASB). (Oo)cysts and indicators were enumerated using standard methods and viruses using RT-PCR. Giardia cysts and enteroviruses were constantly detected, mean numbers 10(3.11) cysts and 10(4.0) PCR units L(-1), respectively. Oocysts were found in 5/19 samples, mean number 5 L(-1). Noroviruses were found in 6/7 influent samples, with an average titre of 10(3.28)L(-1), during winter, but only in 2/15 in the rest of the year (mean 200 L(-1)). MBR treatment removed indicators more efficiently than did the other two lines, with 5log removal of E. coli. Human virus genome removal did not differ between the MBR and tertiary treatment line. Microorganism removal in UASB was significantly lower for all the organisms studied. E. coli, enterococci and Cl. perfringens removal was correlated (p<0.05) with enterovirus genome removal, with R-values around 0.4. However, values for removal of indicators were more strongly correlated to each other. Removal of viruses based on enumeration using RT-PCR probably underestimates infectious virion removal.  相似文献   

3.
4.
Simmons FJ  Xagoraraki I 《Water research》2011,45(12):3590-3598
In the United States, infectious human enteric viruses are introduced daily into the environment through the discharge of treated water and the digested sludge (biosolids). In this study, a total of 30 wastewater and 6 biosolids samples were analyzed over five months (May-September 2008-2009) from five full-scale wastewater treatment plants (WWTPs) in Michigan using real-time PCR and cell culture assays. Samples were collected from four different locations at each WWTP (influent, pre-disinfection, post-disinfection and biosolids) using the 1MDS electropositive cartridge filter. Adenovirus (HAdV), enterovirus (EV) and norovirus genogroup II (NoV GGII) were detected in 100%, 67% and 10%, respectively of the wastewater samples using real-time PCR. Cytopathic effect (CPE) was present in 100% of the cell culture samples for influent, pre- and post-disinfection and biosolids with an average log concentration of 4.1 (2.9-4.7, range) 1.1 (0.0-2.3, range) and 0.5 (0.0-1.6, range) MPN/100 L and 2.1 (0.5-4.1) viruses/g, respectively. A significant log reduction in infectious viruses throughout the wastewater treatment process was observed at an average 4.2 (1.9-5.0, range) log units. A significant difference (p-value <0.05) was observed using real-time PCR data for HAdV but not for EV (p-value >0.05) removal in MBR as compared to conventional treatment. MBR treatment was able to achieve an additional 2 and 0.5 log reduction of HAdV and EV, respectively. This study has demonstrated the release of infectious enteric viruses in the final effluent and biosolids of wastewater treatment into the environment.  相似文献   

5.
The distribution of female hormones, 17beta-estradiol and estrone, was determined in effluents of 18 selected municipal treatment plants across Canada. Replicate 24-h composite samples were collected from the influent and final effluent of each treatment plant, and the removal efficiency compared to the operational characteristics of the plants. In conventional activated sludge and lagoon treatment systems, the mean concentrations of 17beta-estradiol and estrone in influent were 15.6 ng/l (range 2.4-26 ng/l) and 49 ng/l (19-78 ng/l). In final effluents, the mean concentrations of both 17beta-estradiol and estrone were reduced to 1.8 ng/l (0.2-14.7 ng/l) and 17 ng/l (1-96 ng/l), respectively. 17beta-estradiol was removed effectively, >75% and as high as 98%, in most of the conventional mechanical treatment systems with secondary treatment. The removal of estrone was much more complex with removal varying from 98% to situations where the concentrations in the effluent were elevated above that detected in the influent. The estrogenicity, measured using a transfected estrogen receptor in yeast (YES) assay, was also variable, ranging from high removal to elevations of estrogenicity in final effluent. Although the apparent removals were not statistically correlated with either hydraulic (HRT) or solid (SRT) retention times, plants or lagoons with high SRT were very effective at reducing the levels of hormones. Well-operated plants that achieved nitrification also tended to have higher removal of hormones than those that did not nitrify. Laboratory aerobic reactor experiments confirmed the rapid removal of 17beta-estradiol, estrone, and estrogenicity when exposed to sewage slurries.  相似文献   

6.
A pilot study was conducted over a period of 18 months at the Point Loma Wastewater Treatment Plant (PLWWTP) in San Diego, CA to evaluate the operational and water quality performance of six selected membrane bioreactor (MBR) systems at average and peak flux operation. Each of these systems was operated at peak flux for 4 h a day for six consecutive days to assess peak flux performance. Virus seeding studies were also conducted during peak flux operation to assess the capability of these systems to reject MS-2 coliphage. When operating at steady state, these MBR systems achieved an effluent BOD concentration of <2 mg/L and a turbidity of <0.1 NTU. Peak flux for the MBR systems ranged from 56 to 76 L/m2/h (liters per square meter per hour) with peaking factors in the range of 1.5-3.2. When switching from average to peak flux operation, a reversible drop of 22-32% in temperature-corrected permeability was observed for all submerged MBR systems. The percent drop in permeability increased as MLSS concentration in the membrane tank increased from 11,100 mg/L to 15,300 mg/L and was observed to be highest for the system operating at highest MLSS concentration. Such trends were not observed with an external MBR system. Each MBR system was able to sustain a 4-h-a-day peak flow for six consecutive days with only moderate membrane fouling. The membrane fouling was quantified by measuring the drop in temperature-corrected permeability. This drop ranged from 13 to 33% over six days for different submerged MBR systems. The MBR systems achieved microbial removal in the range of 5.8-6.9 logs for total coliform bacteria, >5.5 to >6.0 logs for fecal coliform bacteria and 2.6 to >3.4 logs for indigenous MS-2 coliphages. When operating at peak flux, seeded MS-2 coliphage removal ranged from 1.0 to 4.4 logs, respectively. The higher log removal values (LRVs) for indigenous MS-2 coliphage among different MBR systems were probably the result of particle association of indigenous coliphage. Differences in membrane pore size (0.04-0.2 μm) amongst the MBR systems evaluated did not have a substantial impact on indigenous MS-2 coliphage removal, but seeded MS-2 coliphage removal varied among the different MBR systems.  相似文献   

7.
The occurrence and removal of salmonellae and faecal indicators in four conventional municipal wastewater treatment plants (MWTP) were investigated. In addition, we tested the efficiency of a semi-technical scale biological nutrient removal process and three pilot-scale tertiary filtration units in microbial removal. All influent samples collected from MWTPs contained salmonellae from 93 to 11,000 MPN/100 ml and indicator bacteria from about 10(7) to 10(8) CFU/100 ml. The reductions in salmonella numbers achieved in full-scale biological-chemical wastewater treatment and semi-technical scale biological nutrient removal processes were usually between 94% and virtually 100% (99.9%) and indicator bacteria reductions between 2 and 3 log units. Microbial numbers in MWTP effluents could be modelled as a function of effluent residual organic matter, suspended solids and total phosphorus concentrations. Pilot-scale tertiary treatment by rapid sand contact filter, chemical contact filter and biological-chemical contact filter reduced salmonella numbers below the detection limit and faecal coliform numbers on average by 99%, 39% and 71%, respectively. A total of 32 Salmonella serovars were identified among 197 Salmonella isolates from municipal wastewaters. Of the isolates, 32% were resistant to nalidixic acid, indicating reduced sensitivity to ciprofloxacin, the drug of choice in the treatment of salmonellosis. In addition, 18% of the isolates were multiresistant. Our results, especially antibiotic resistant Salmonella strains, indicate that conventional municipal wastewater treatment without efficient tertiary treatment, like filtration or disinfection, may constitute a risk for public health.  相似文献   

8.
The relative disinfection efficiencies of peracetic acid (PAA), hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl) against Escherichia coli, Enterococcus faecalis, Salmonella enteritidis and coliphage MS2 virus were studied in laboratory-scale experiments. This study also evaluated the efficiency of combined PAA/ultraviolet irradiation (UV) and H2O2/UV treatments to determine if the microbial inactivation was synergistic. Microbial cultures were added into a synthetic wastewater-like test medium and treated by chemical disinfectants with a 10 min contact time, UV irradiation or the combination of chemical and UV treatments. A peracetic acid dose of 3 mg/l resulted in approximately 2-3 log enteric bacterial reductions, whereas 7-15 mg/l PAA was needed to achieve 1-1.5 log coliphage MS2 reductions. Doses of 3-150 mg/l hydrogen peroxide achieved below 0.2 log microbial reductions. Sodium hypochlorite treatments caused 0.3-1 log microbial reductions at an 18 mg/l chlorine dose, while 2.6 log reductions of E. faecalis were achieved at a 12 mg/l chlorine dose. The results indicate that PAA could represent a good alternative to chlorine compounds in disinfection procedures, especially in wastewaters containing easily oxidizable organic matter. Hydrogen peroxide is not an efficient disinfectant against enteric microorganisms in wastewaters. The combined PAA/UV disinfection showed increased disinfection efficiency and synergistic benefits with all the enteric bacteria tested but lower synergies for the coliphage MS2. This suggests that this method could improve the efficiency and reliability of disinfection in wastewater treatment plants. The combined H2O2/UV disinfection only slightly influenced the microbial reductions compared to UV treatments and showed some antagonism and no synergies.  相似文献   

9.
We studied the occurrence, removal, and fate of 16 polycyclic aromatic hydrocarbons (PAHs) and 23 volatile organic compounds (VOCs) in Italian municipal wastewater treatment systems in terms of their common contents and forms, and their apparent and actual removal in both conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). We studied five representative full-scale CASP treatment plants (design capacities of 12 000 to 700 000 population-equivalent), three of which included MBR systems (one full-scale and two pilot-scale) operating in parallel with the conventional systems. We studied the solid-liquid partitioning and fates of these substances using both conventional samples and a novel membrane-equipped automatic sampler. Among the VOCs, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, and 4-chlorotoluene were ubiquitous, whereas naphthalene, acenaphthene, fluorene, and phenanthrene were the most common PAHs. Both PAHs and aromatic VOCs had removal efficiencies of 40-60% in the headworks, even in plants without primary sedimentation. Mainly due to volatilization, aromatic VOCs had comparable removal efficiencies in CASP and MBRs, even for different sludge ages. MBRs did not enhance the retention of PAHs sorbed to suspended particulates compared with CASPs. On the other hand, the specific daily accumulation of PAHs in the MBR’s activated sludge decreased logarithmically with increasing sludge age, indicating enhanced biodegradation of PAHs. The PAH and aromatic VOC contents in the final effluent are not a major driver for widespread municipal adoption of MBRs, but MBRs may enhance the biodegradation of PAHs and their removal from the environment.  相似文献   

10.
The EC urban waste water treatment Directive will lead to some sewage-treatment works in the UK having to remove nitrogen and phosphorus. The paper reviews the basic biological processes which are available for retrofitting existing activated-sludge plants to achieve this removal, and then points to some of the problems which are encountered with these processes in other countries. The authors make suggestions as to how these problems can be overcome in design and operation. The paper also provides a cost comparison of different ways of uprating an existing nitrifying activated-sludge plant to achieve nitrification/ denitrification and phosphorus removal.  相似文献   

11.
The efficiency of peracetic acid (PAA) disinfection against enteric bacteria and viruses in municipal wastewaters was studied in pilot-scale. Disinfection pilot-plant was fed with the primary or secondary effluent of Kuopio municipal wastewater treatment plant or tertiary effluent from the pilot-scale dissolved air flotation (DAF) unit. Disinfectant doses ranged from 2 to 7 mg/l PAA in the secondary and tertiary effluents, and from 5 to 15 mg/l PAA in the primary effluents. Disinfection contact times were 4-27 min. Disinfection of secondary and tertiary effluents with 2-7 mg/l PAA and 27 min contact time achieved around 3 log reductions of total coliforms (TC) and enterococci (EC). PAA disinfection also significantly improved the hygienic quality of the primary effluents: 10-15 mg/l PAA achieved 3-4 log reductions of TC and EC, 5 mg/l PAA resulting in below 2 log reductions. F-RNA coliphages were more resistant against the PAA disinfection and around 1 log reductions of these enteric viruses were typically achieved in the disinfection treatments of the primary, secondary and tertiary effluents. Most of the microbial reductions occurred during the first 4-18 min of contact time, depending on the PAA dose and microorganism. The PAA disinfection efficiency remained relatively constant in the secondary and tertiary effluents, despite of small changes of wastewater quality (COD, SS, turbidity, 253.7 nm transmittance) or temperature. The disinfection efficiency clearly decreased in the primary effluents with substantially higher microbial, organic matter and suspended solids concentrations. The results demonstrated that PAA could be a good alternative disinfection method for elimination of enteric microbes from different wastewaters.  相似文献   

12.
The paper describes a programme of technology development in phosphate removal which was carried out by Anglian Water in response to the requirements of the urban waste water treatment Directive Trials covered pilot and large-scale biological nutrient-removal plants, and iron-salt dosing to activated-sludge plants and biological filters. The fundamentals of the processes are discussed and results are presented.  相似文献   

13.
Three drinking-water treatment plants were analyzed for the presence of human adenoviruses (HAdV) and JC polyomavirus (JCPyV), previously suggested as viral contamination indicators, in order to define their water quality in relation to the presence of viral pathogens and the efficiency of the treatments applied.The 90% of the river water samples had positive results of HAdV (101-104 genome copies (GC)/L); and 48%, of JCPyV (100-103 GC/L). Lower concentrations of HAdV and JCPyV were found in different treatment steps of the plants in absence of bacterial standards. Virus removal efficiencies were higher than 5 logs in plants 1 and 3 and could be quantified as >2 logs in plant 2. However, three post-chlorinated samples from plants 2 and 3 (11%) were found to be positive for HAdV by qPCR, but did not show infectivity in the cell cultures assayed. Simple methods based on the adsorption-elution of viruses from glass wool give low-cost and efficient virus recovery from source water and large-volume water samples. Quantification of JCPyV and HAdV using qPCR is useful for evaluating virus removal efficiency in water treatment plants, identification of Hazard Analysis and Critical Control Points (HACCP) and as a molecular index of the virological quality of water. Though infectivity is not guaranteed when using qPCR techniques in water treated with disinfection processes, the quality of source water, where viruses have proved to have infective capabilities, and the removal efficiency of viral particles may be efficiently quantified.  相似文献   

14.
The use of indigenous coliphage as indicators of enteric viruses during activated sludge treatment of domestic wastewater was examined. Enteric viruses, coliphage attacking three strains of Escherichia coli and a number of wastewater parameters were monitored in the primary effluent, secondary effluent and secondary sludge of a wastewater treatment plant.Removal of viruses during secondary treatment appeared to be the result of rapid adsorption of influent virions to mixed liquor suspended solids. Adsorption was followed by inactivation of the viruses during aeration of the mixed liquor. A larger proportion of influent enteric viruses than coliphage was recovered from the secondary sludge. This suggests that activated sludge treatment was less antagonistic towards enteric viruses than towards the coliphage.Coliphage plaques of less than or equal to 1 mm in diameter were composed of large viruses (approx. 100 nm in diameter). Plaques greater than 3 mm in diameter appeared to be the result of host infection by a much smaller virus (approx. 45 nm in diameter). Plaques between 1 and 3 mm in diameter were composed of both small and large coliphages.Coliphage concentrations could not be correlated with enteric virus concentrations in either primary or secondary effluent. However, it was found that coliphage giving rise to plaques greater than 3 mm in diameter were positively related with enteric viruses in the secondary effluent. This result suggests that this group of coliphage may serve as an indicator of the efficacy of activated sludge treatment of enteric viruses.  相似文献   

15.
The presence of waterborne enteric pathogens in municipal water supplies contributes risk to public health. To evaluate the removal of these pathogens in drinking water treatment processes, previous researchers have spiked raw waters with up to 10(6) pathogens/L in order to reliably detect the pathogens in treated water. These spike doses are 6-8 orders of magnitude higher than pathogen concentrations routinely observed in practice. In the present study, experiments were conducted with different sampling methods (i.e., grab versus continuous sampling) and initial pathogen concentrations ranging from 10(1) to 10(6) pathogens/L. Results showed that Cryptosporidium oocyst and Giardia cyst removal across conventional treatment were dependent on initial pathogen concentrations, with lower pathogen removals observed when lower initial pathogen spike doses were used. In addition, higher raw water turbidity appeared to result in higher log removal for both Cryptosporidium oocysts and Giardia cysts.  相似文献   

16.
Changes in water quality in reclaimed water distribution systems are a major concern especially when considering the potential for growth of pathogenic microbes. A survey of 21 wastewater process configurations confirmed the high quality effluent produced using membrane bioreactor (MBR) technology, but suggests that other technologies can be operated to produce similar quality. Data from an intensive twelve-month sampling campaign in four reclaimed water utilities revealed the important trends for various organic carbon parameters including total organic carbon (TOC), biodegradable dissolved organic carbon (BDOC), and assimilable organic carbon (AOC). Of the four utilities, two were conventional wastewater treatment with open reservoir storage and two employed MBR technology with additional treatment including UV, ozone, and/or chlorine disinfection. Very high BDOC concentrations occurred in conventional systems, accounting for up to 50% of the TOC loading into the system. BDOC concentrations in two conventional plants averaged 1.4 and 6.3 mg/L and MBR plants averaged less than 0.6 mg/L BDOC. Although AOC showed wide variations, ranging from 100 to 2000 μg/L, the AOC concentrations in the conventional plants were typically 3-10 times higher than in the MBR systems. Pipe-loop studies designed to understand the impact of disinfection on the microbiology of reclaimed water in the distribution system revealed that chlorination will increase the level of biodegradable organic matter, thereby increasing the potential for microbial growth in the pipe network. This study concludes that biodegradable organic carbon is an important factor in the microbial quality and stability of reclaimed water and could impact the public health risk of reclaimed water at the point of use.  相似文献   

17.
Ho L  Braun K  Fabris R  Hoefel D  Morran J  Monis P  Drikas M 《Water research》2012,46(12):3934-3942
Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser.  相似文献   

18.
Membrane bioreactors (MBRs) are often a preferred treatment technology for satellite water recycling facilities since they produce consistent effluent water quality with a small footprint and require little or no supervision. While the water quality produced from centralized MBRs has been widely reported, there is no study in the literature addressing the effluent quality from a broad range of satellite facilities. Thus, a study was conducted to characterize effluent water qualities produced by satellite MBRs with respect to organic, inorganic, physical and microbial parameters. Results from sampling 38 satellite MBR facilities across the U.S. demonstrated that 90% of these facilities produced nitrified (NH4-N <0.4 mg/L-N) effluents that have low organic carbon (TOC <8.1 mg/L), turbidities of <0.7 NTU, total coliform bacterial concentrations <100 CFU/100 mL and indigenous MS-2 bacteriophage concentrations <21 PFU/100 mL. Multiple sampling events from selected satellite facilities demonstrated process capability to consistently produce effluent with low concentrations of ammonia, TOC and turbidity. UV-254 transmittance values varied substantially during multiple sampling events indicating a need for attention in designing downstream UV disinfection systems. Although enteroviruses, rotaviruses and hepatitis A viruses (HAV) were absent in all samples, adenoviruses were detected in effluents of all nine MBR facilities sampled. The presence of Giardia cysts in filtrate samples of two of nine MBR facilities sampled demonstrated the need for an appropriate disinfection process at these facilities.  相似文献   

19.
Williams MD  Pirbazari M 《Water research》2007,41(17):3880-3893
This research investigated a membrane bioreactor (MBR) process for removing biodegradable organic matter (BOM) and trihalomethane (THM) precursors from pre-ozonated water. Bench-scale and mini-pilot-scale MBR experiments were conducted using powdered activated carbon (PAC) and acclimated biomass. Dissolved organic carbon (DOC) was removed through a combination of adsorption and biodegradation mechanisms, and the initial DOC removals depended on carbon dose, while steady-state removals were in the 20-60 percent range under various operating conditions. Both assimilable organic carbon (AOC) and total aldehydes were mostly removed to near detection limits and were not affected by PAC dosage. The AOC(NOX) removals were significantly higher than AOC(P17) or total AOC removals probably because the MBR microbial consortium was closer in characteristics to Aquaspirillum NOX than to Pseudomonas fluorescens (P17). The DOC was used instead of biodegradable organic carbon (BDOC) as a parameter for evaluating disinfection byproduct formation and bacterial regrowth potentials because BDOC assays did not yield consistent and conclusive results due to analytical difficulties. The removals of THM precursors were high when PAC was added; however, steady-state removals were a function of operating conditions and PAC dosage. Addition of PAC enhanced DOC removals and membrane permeate fluxes. Furthermore, pre-ozonation reduced membrane fouling and enhanced membrane permeate flux.  相似文献   

20.
The efficacy of a microfiltration (MF) pilot plant in removing somatic coliphages (referred hereafter as coliphages) present in the secondary effluent was evaluated during this study. The impact of operating parameters such as feed coliphage concentrations, permeate flux and membrane fouling on the removal of coliphages by the MF plant was investigated. The study showed that membrane fouling was beneficial for removing coliphages by MF. It was also shown that the removal of coliphages by MF was initially governed by adsorption on membrane surface or in membrane pores. As the membrane fouled, however, the removal of coliphages was primarily governed by direct interception on the cake layer formed on the surface of the membrane. Increases in feed coliphage concentrations resulted in the passage of larger numbers of coliphages when the MF was clean but had little impact on the passage of coliphages when the membrane became fouled. Increasing permeate flux lowered log-removal values (LRVs) for the clean membrane but resulted in an initial increase in LRVs for the fouled membrane followed by a drop in LRVs with further increases in permeate flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号