首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, with the development of mobile communication technologies and the increase of available wireless transmission bandwidth, deploying multimedia services in next generation mobile IPv6 networks has become an inevitable trend. RSVP (resource reservation protocol) proposed by the IETF is designed for hardwired and fixed networks and can not be used in mobile environments. This paper proposes a protocol, called Fast RSVP, to reserve resources for mobile IPv6. The protocol adopts a cross-layer design approach where two modules (RSVP module and Mobile IPv6 module) at different layers cooperate with each other. Fast RSVP divides a handover process with QoS guarantees into two stages: (1) setup of the resource reservation neighbor tunnel and (2) resource reservation on the optimized route. It can help a mobile node realize fast handover with QoS guarantees as well as avoid resource wasting by triangular routes, advanced reservations and duplicate reservations. In addition, fast RSVP reserves “guard channels” for handover sessions, thus greatly reducing the handover session forced termination rate while maintaining high performance of the network. Based on extensive performance analysis and simulations, Fast RSVP, compared with existing methods of resource reservation in mobile environments, performs better in terms of packet delay and throughput during handover, QoS recovery time after handover, resource reservation cost, handover session forced termination rate and overall session completion rate.  相似文献   

2.
1IntroductionMobile users want to enjoy multi media and other real-ti me services in the Internet . Thus the Internet Engi-neering Task Force (IETF) has introduced the MobileIPv4[1]and Mobile IPv6[2]to interoperate seamlesslywith protocols that provide real-ti me services in the In-ternet. Multi-Protocol Label Switching ( MPLS) is afast label-based switching technology that integrates thelabel-swapping paradigm with network-layer routing[3].Resource Reservation Protocol ( RSVP)[4 ~…  相似文献   

3.
基于3GPP2框架的无线移动网络的RSVP扩展研究   总被引:2,自引:0,他引:2       下载免费PDF全文
华蓓  熊焰  蔡承杰 《电子学报》2002,30(Z1):2111-2114
本文讨论了面向固定网络设计的RSVP协议应用于无线移动网络需要解决的问题,并针对3GPP2框架下的无线移动网络提出了一种RSVP扩展方案.该方案采用隧道预留技术建立端-端主动预留,为数据连接提供服务质量保证;采用移动预测和被动预留技术在移动节点可能进入的蜂窝内提前预留无线资源,提高切换成功的概率;通过采用主动切换技术减小预留路径调整的时间,进一步提高通信的连续性.  相似文献   

4.
RSVP Extensions for Real-Time Services in Hierarchical Mobile IPv6   总被引:2,自引:0,他引:2  
The Mobile IPv6 (MIPv6) provides many great features, such as sufficient addressing space, mobility, and security; MIPv6 is one of the most important protocols for next generation mobile Internet. Simultaneously, with the rapid improvement of wireless technologies, the real-time multi-media IP services such as video on demand, videoconference, interactive games, IP telephony and video IP phone will be delivered in the near future. Thus, to furnish accurate QoS for real-time services is one of the most important thing in the next generation mobile Internet. Although RSVP, which is a resource reservation protocol, processes signaling messages to establish QoS paths between senders and receivers, RSVP was originally designed for stationary networks and not aware of the mobility of MNs. Therefore, this paper proposes a novel RSVP extension to support real-time services in Hierarchical Mobile IPv6 (HMIPv6) environments. For intra-site mobility, the concept of QoS Agent (QA) is proposed to handle the RSVP QoS update messages and provide the advanced reservation models for real-time services. For inter-site mobility, IP multicast can help to invite inter-site QAs to make pre-reservation and minimize the service disruption caused by re-routing the data path during handover. Simulation results show that the proposed scheme over HMIPv6 is more suitable for real-time services than the famous RSVP tunnel-based solution.  相似文献   

5.
The coupling of signaling protocols for mobility management and resource reservation plays an important role to achieve Quality-of-Service (QoS) in wireless environments. When performing a handover, request and allocation of resources have to be done in the shortest possible time to avoid disruptions for the user service. Therefore, it is preferable to ensure resource availability in advance, which we call anticipated handover. This approach for providing seamless handovers in turn poses challenges for the overall design of the QoS architecture and its associated QoS signaling protocol. This article describes the design, implementation, and evaluation of a comprehensive QoS architecture and a suitable QoS signaling protocol. It discusses intrinsic problems of reservations in IP based networks such as session ownership as well as a number of protocol design issues regarding the integration of QoS signaling with other protocols, such as Mobile IP. In particular, we define an end-to-end QoS architecture and a mobility-aware reservation signaling protocol Mobility Aware Reservation Signaling Protocol (MARSP) that supports anticipated handover, thus enabling seamless services over heterogeneous wireless access networks. The presented architecture and protocol were implemented and evaluated by measurements. They show that anticipated handovers not only outperform hard handovers regarding handover latency, but that they also provide functional and robustness advantages. Authors Hillebrand and Prehofer changed their affiliation in the meantime, the work described in this paper was carried out during their employment at DoCoMo Communications Laboratories Europe.  相似文献   

6.
Quality-of-service mechanisms in all-IP wireless access networks   总被引:7,自引:0,他引:7  
In this paper, we focus on resource reservation protocol (RSVP)-based quality-of-service (QoS) provisioning schemes under Internet protocol (IP) micromobility. We consider QoS provisioning mechanisms for on-going RSVP flows during handoff. First, the rerouting of RSVP branch path at a crossover router (CR) at every handoff event can minimize resource reservation delays and signaling overheads, and in turn the handoff service degradation can be minimized. We show that RSVP branch path rerouting scheme could give a good tradeoff between the resource reservation cost and the link usage. Second, the new RSVP reservation can be made along the branch path toward the CR via a new base station in advance, while the existing reservation path is maintained, and in turn the on-going flow can be kept with the guaranteed QoS. We also show that seamless switching of RSVP branch path could provide the QoS guarantee by adaptively adjusting the pilot signal threshold values. Third, during RSVP resource reservation over wireless link, dynamic resource allocation scheme is used to give a statistical guarantee on the handoff success of on-going flows. We finally obtain the forced termination probability of guaranteed service flows, the average system time of best effort flows by using a transition rate matrix approach.  相似文献   

7.
RSVP extensions for real-time services in wireless mobile networks   总被引:2,自引:0,他引:2  
Currently, the RSVP model, which is efficient resource reservation in the fixed endpoints, becomes invalid under host mobility. We investigate the problems of standard RSVP in providing real-time services in wireless mobile networks. We also observe carefully how to interoperate IntServ services over DiffServ networks, and how to map IntServ QoS parameters into a wireless link. We then identify the advantages and drawbacks of the existing RSVP proposals to support QoS under both micromobility and macromobility. We finally propose a dynamic resource allocation scheme for reducing service disruption of real-time applications due to frequent mobility of a host  相似文献   

8.
The General Packet Radio Service (GPRS) offers performance guaranteed packet data services to mobile users over wireless frequency-division duplex links with time division multiple access, and core packet data networks. This paper presents a dynamic adaptive guaranteed Quality-of-Service (QoS) provisioning scheme over GPRS wireless mobile links by proposing a guaranteed QoS media access control (GQ-MAC) protocol and an accompanying adaptive prioritized-handoff call admission control (AP-CAC) protocol to maintain GPRS QoS guarantees under the effect of mobile handoffs. The GQ-MAC protocol supports bounded channel access delay for delay-sensitive traffic, bounded packet loss probability for loss-sensitive traffic, and dynamic adaptive resource allocation for bursty traffic with peak bandwidth allocation adapted to the current queue length. The AP-CAC protocol provides dynamic adaptive prioritized admission by differentiating handoff requests with higher admission priorities over new calls via a dynamic multiple guard channels scheme, which dynamically adapts the capacity reserved for dealing with handoff requests based on the current traffic conditions in the neighboring radio cells. Integrated services (IntServ) QoS provisioning over the IP/ATM-based GPRS core network is realized over a multi-protocol label switching (MPLS) architecture, and mobility is supported over the core network via a novel mobile label-switching tree (MLST) architecture. End-to-end QoS provisioning over the GPRS wireless mobile network is realized by mapping between the IntServ and GPRS QoS requirements, and by extending the AP-CAC protocol from the wireless medium to the core network to provide a unified end-to-end admission control with dynamic adaptive admission priorities.  相似文献   

9.
Efforts are underway to enhance the Internet with Quality of Service (QoS) capabilities for transporting real‐time data. The issue of wireless networks and mobile hosts being able to support applications that require QoS has become very significant. The ReSerVation Protocol (RSVP) provides a signaling mechanism for end‐to‐end QoS negotiation. RSVP has been designed to work with wired networks. To make RSVP suitable for wireless networks, changes need to be made by: (i) changing the way control messages are sent, and (ii) introducing wireless/mobile specific QoS parameters that take into account the major features of wireless networks, namely, high losses, low bandwidth, power constraints and mobility. In this paper, an architecture with a modified RSVP protocol that helps to provide QoS support for mobile hosts is presented. The modified RSVP protocol has been implemented in an experimental wireless and mobile testbed to study the feasibility and performance of our approach. Class Based Queueing (CBQ) which is used as the underlying bandwidth enforcing mechanism is also modified to fit our approach. The experimental results show that the modified RSVP and CBQ help in satisfying resource requests for mobile hosts, after handoff occurs. The experiments also show how different power and loss profile mechanisms can be used with our framework. The system performance using the modified RSVP control mechanism is also studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Quality-of-service signaling for next-generation IP-based mobile networks   总被引:2,自引:0,他引:2  
We present a novel end-to-end QoS architecture that enables seamless services over heterogeneous wireless access networks. We discuss the main architectural approaches and design issues of mobility-aware QoS signaling in IP networks. Then we introduce a QoS signaling architecture that integrates resource management with mobility management. It is based on a domain resource manager concept and nicely supports various handover types in an integrated approach. In particular, we support anticipated handover with pre-reservation of resources over the old network before the mobile node is attached to the new access point.  相似文献   

11.
Future wireless communications are expected to provide mobile users access to the desired service with the appropriate quality at any place. The essential elements for assembling such a vision are mobility, quality of service (QoS) provision and scalability, which are expected to be merged into the design process of wireless access networks. Internet mobility support is currently entering a mature phase in which scalable solutions provide low loss or even seamless handovers in cellular and heterogeneous mobile environments. Wireless and mobile QoS architectures extend the equivalent Internet approaches in order to accommodate the requirements associated with the presence of wireless links and mobility. Nevertheless, none of the popular mobility proposals combined with wireless and mobile QoS architectures encounter QoS in the routing function, leaving the QoS provision underutilized. QoS routing (QoSR) complements existing QoS architectures, enhancing application performance especially in the case of congestion, while providing efficient resource management. However, QoSR was originally designed for fixed IP networks without taking mobility into account. This paper investigates the interaction of QoSR in wireless access networks, identifying key points for the efficient cooperation with mobility and existing QoS architectures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
In Mobile IP, the signaling traffic overhead will be too high since the new Care-of-Address (CoA) of the mobile node (MN) is registered all the way with the home agent (HA) whenever the MN has moved into a new foreign network. To complement Mobile IP in better handling local movement, several IP micro protocols have been proposed. These protocols introduce a hierarchical mobility management scheme, which divides the mobility into micro mobility and macro mobility according to whether the host's movement is intra-domain or inter-domain. Thus, the requirements on performance and flexibility are achieved, especially for frequently moving hosts. This paper introduces a routing protocol for multicast source mobility on the basis of the hierarchical mobile management scheme, which provides a unified global architecture for both uni- and multicast routing in mobile networks. The implementation of multicast services adopts an improved SSM (Source Specific Multicast) model, which combines the advantages of the existing protocols in scalability and mobility transparency. Simulation results show that the proposed protocol has better performance than the existing routing protocols for SSM source mobility.  相似文献   

13.
This paper describes a reservation protocol to provide real-time services to mobile users in an Integrated Services Packet Network. Mobility of hosts has significant impact on the quality of service provided to a real-time application. The currently proposed network system architecture and mechanisms to provide real-time services to fixed hosts are inadequate to accommodate the mobile hosts which can frequently change their point of attachments to the fixed network. Mobile hosts may experience wide variations of quality of service due to mobility. To reduce the impacts of mobility on QoS guarantees, a mobile host needs to make advance resource reservations at multiple locations it may possibly visit during the lifetime of the connection. The currently proposed reservation protocol in the Internet, RSVP, is not adequate to make such reservations for mobile hosts. In this paper, we describe a new reservation protocol, MRSVP, for supporting integrated services in a network with mobile hosts.  相似文献   

14.
Resource management for QoS support in cellular/WLAN interworking   总被引:3,自引:0,他引:3  
To provide mobile users with seamless Internet access anywhere and anytime/ there is a strong demand for interworking mechanisms between cellular networks and wireless local area networks in the next-generation all-IP wireless networks. In this article we focus on resource management and call admission control for QoS support in cellular/WLAN interworking. In specific, a DiffServ interworking architecture with loose coupling is presented. Resource allocation in the interworking environment is investigated/ taking into account the network characteristics, vertical handoff, user mobility, and service types. An effective call admission control strategy with service differentiation is proposed for QoS provisioning and efficient resource utilization. Numerical results demonstrate the effectiveness of the proposed call admission control scheme.  相似文献   

15.
As the volume of mobile traffic consisting of video, voice, and data is rapidly expanding, a challenge remains with the mobile transport network, which must deliver data traffic to mobile devices without degrading the service quality. Since every Internet service holds its own service quality requirements, the flow-aware traffic management in fine granularity has been widely investigated to guarantee Quality of Service (QoS) in the IP networks. However, the mobile flow-aware management has not been sufficiently developed yet because of the inherent constraints of flow routing in the mobile networks regarding flow-aware mobility and QoS support. In this paper, we propose a flow-aware mobility and QoS support scheme called mobile flow-aware network (MFAN) for IP-based wireless mobile networks. The proposed scheme consists of dynamic handoff mechanisms based on QoS requirements per flow to reduce the processing overhead of the flow router while ensuring QoS guarantee to mobile flows. The performance analyses of the proposed scheme demonstrate that MFAN successfully supports the mobile flow traffic delivery while satisfying the QoS requirement of flows in the wireless mobile IP networks.  相似文献   

16.
田永春  姜永广 《通信技术》2010,43(8):214-216,219
移动栅格网是一种全移动多跳无线栅格网络,采用了面向服务的全IP技术体制和全新的分层协议模型。针对这种新型网络结构和协议模型,提出了一种跨层资源管理方法,通过将呼叫接纳控制、路由选择、资源预留、排队机制以及信道接入机制等进行跨层设计,增加层间协作机制和方法以达到资源利用的优化和业务服务质量的提高。对跨层资源管理的总体框架和思路进行了详细描述,对具体实现途径进行了探讨。  相似文献   

17.
Resource reservation protocol (RSVP) is a network‐control protocol used to guarantee Quality‐of‐Service (QoS) requirements for real‐time applications such as Voice‐over‐IP (VoIP) or Video‐over‐IP (VIP). However, RSVP was designed for end‐systems whose IP addresses do not change. Once mobility of an end‐system is allowed, the dynamically changing mobile IP address inevitably impacts on RSVP performance. Our study aims to first quantify the significance of this impact, and then propose a modified RSVP mechanism that provides improved performance during handoffs. Our simulations reveal that the deployment of standard RSVP over Mobile IPv6 (MIPv6) does not yield a satisfactory result, particularly in the case of VIP traffic. Fast Handovers for Mobile IPv6 (FMIPv6) was found to be providing the best performance in all tested scenarios, followed by Hierarchical Mobile IPv6 (HMIPv6) with a single exception: during low handoff rates with VoIP traffic, MIPv6 outperformed HMIPv6. We then designed a new RSVP mechanism, and tested it against standard RSVP. We found that the proposed approach provides a significant improvement of 54.1% in the Total Interruption in QoS (TIQoS) when deployed over a MIPv6 wireless network. For HMIPv6, performance depended primarily on the number of hierarchical levels in the network, with no improvement in TIQoS for single‐level hierarchy and up to 37% for a 5‐level hierarchy. FMIPv6 on the other hand, provided no room for improvement due to pre‐handoff signaling and the tunneling mechanism used to ensure a mobile node (MN)'s connectivity during a handoff, regardless of the RSVP mechanism used. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The next-generation wireless networks are evolving toward a versatile IP-based network that can provide various real-time multimedia services to mobile users. Two major challenges in establishing such a wireless mobile Internet are support of fast handoff and provision of quality of service (QoS) over IP-based wireless access networks. In this article, a DiffServ resource allocation architecture is proposed for the evolving wireless mobile Internet. The registration-domain-based scheme supports fast handoff by significantly reducing mobility management signaling. The registration domain is integrated with the DiffServ mechanism and provisions QoS guarantee for each service class by domain-based admission control. Furthermore, an adaptive assured service is presented for the stream class of traffic, where resource allocation is adjusted according to the network condition in order to minimize handoff call dropping and new call blocking probabilities  相似文献   

19.
移动性管理和服务质量(Q0S)保证一直是移动通信网络中两个关键性问题.文章介绍了全IP移动通信网接入网部分的几种QoS实现机制,通过扩展QoS保证机制与微移动管理协议之间的耦合,提出了一种资源预留协议(RSVP)和Hawaii协议松耦合的方案,并以集成了RSVP和Hawaii的仿真平台对该方案进行了仿真.仿真结果表明,松耦合方案可以显著地提高切换过程中的QoS.  相似文献   

20.
移动IP技术能够支持基于IP的无线网络,资源预留协议(RSVP)用来保证多媒体传输的服务质量。然而把现有的RSVP应用于移动IP网络就会存在许多问题。提出了一种改进的RSVP支持方案(ERSVP)来实现无线IP网络的服务质量保证。ERSVP在分层网络中结合了MRSVP和RSVP隧道技术。根据性能分析,ERSVP方案能够获得比MRSVP较少的信令延迟、信令负载和资源耗费。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号