首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a numerical investigation of the flow characteristics of helical capillary tubes compared with straight capillary tubes. The homogenous two-phase flow model developed is based on the conservation of mass, energy, and momentum of the fluids in the capillary tube. This model is validated by comparing it with the experimental data of both straight and helical capillary tubes. Comparisons of the predicted results between the straight and helical capillary tubes are presented, together with the experimental results for straight capillary tubes obtained by previous researchers. The results show that the refrigerant flowing through the straight capillary tube provides a slightly lower pressure drop than that in the helical capillary tube, which resulted in a total tube length that was longer by about 20%. In addition, for the same tube length, the mass flow rate in the helical capillary tube with a coil diameter of 40 mm is 9% less than that in the straight tube. Finally, the results obtained from the present model show reasonable agreement with the experimental data of helical capillary tubes and can also be applied to predict the flow characteristics of straight capillary tubes by changing to straight tube friction factors, for which Churchill's equation was used in the present study.  相似文献   

2.
This paper provides the results of simulations using an adiabatic capillary tube model which is developed to study the flow characteristics in adiabatic capillary tubes used as a refrigerant control device in refrigerating systems. The developed model can be considered as an effective tool of capillary tubes' design and optimization for systems using newer alternative refrigerants. The model is validated by comparing with the experimental data of Li et al. and Mikol for R12 and Melo et al. for R134a. In particular, it has been possible to compare various pairs of refrigerants. It is found that the conventional refrigerants consistently give longer capillary lengths than the alternative refrigerants. For all pairs, the conventional refrigerant consistently give lower pressure drops for both single-phase and two-phase flow which resulted in longer tube lengths. In addition, an example of capillary tube selection chart developed from the present numerical simulation is shown. The chart can be practically used to select the capillary tube size from the flow rate and flow condition or to determine mass flow rate directly from a given capillary tube size and flow condition. The results of this study are of technological importance for the efficient design when systems are assigned to utilize various alternative refrigerants.  相似文献   

3.
This paper presents a numerical study of the flow characteristics of refrigerants flowing through adiabatic helically coiled capillary tubes. The theoretical model is based on conservation of mass, energy and momentum of the fluids in the capillary tube. The two-phase flow model developed was based on the homogeneous flow assumption. The viscosity model was also based on recommendations from the literature. The developed model can be considered as an effective tool for designing and optimizing capillary tubes working with newer alternative refrigerants. The model is validated by comparison with the experimental data of Kim et al. (2002) for R-22, R-407C and R-410A, and Zhou and Zhang (2006) for R-22. The results obtained from the present model show reasonable agreement with the experimental data. The proposed model can be used to design helical capillary tubes working with various refrigerants.  相似文献   

4.
This paper presents new correlations for the practical sizing of adiabatic capillary tubes used as an expansion device in small refrigerating and air-conditioning systems. The governing equation based on conservation of mass, energy and momentum is modelled. The developed model is used as an effective tool for studying the effects of relevant parameters on capillary tube length and developing the correlation. In this model, Colebrook's equation is used to determine the friction factor. The two-phase viscosity models are varied depending on the type of refrigerant and are based on the recommendations from past research. By varying the model input parameters, it is possible to show that for all refrigerants, the length decreases as the mass flow rate increases, increases as subcooling increases, increases as tube diameter increases, decreases as tube roughness increases and increases as condensing temperature increases. After the developed model is validated by comparing with existing experimental data, correlations for sizing capillary tubes, which contains the relevant parameters, namely condensing temperature, degree of subcooling, refrigerant mass flow rate, capillary tube inner diameter and roughness, are presented. Different from previous studies, correlations are presented for an extensive number of refrigerants and a wide range of operations. The developed correlations are validated with previous studies and found to agree well with the experimental data. The correlations can be used to integrate with system models working with alternative refrigerants for practical design and optimization. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A comprehensive review of the literature on the flow of various refrigerants through the capillary tubes of different geometries viz. straight and coiled and flow configurations viz. adiabatic and diabatic, has been discussed in this paper. The paper presents in chronological order the experimental and numerical investigations systematically under different categories. Flow aspects like effect of coiling and effect of oil in the refrigerants on the mass flow rate through the capillary tube have been discussed. Furthermore, the phenomenon of metastability and the correlations to predict the underpressure of vaporization have also been discussed. The paper provides key information about the range of input parameters viz. tube diameter, tube length, surface roughness, coil pitch and coil diameter, inlet subcooling and condensing pressure or temperature. Other information includes type of refrigerants used, correlations proposed and methodology adopted in the analysis of flow through the capillary tubes of different geometries operating under adiabatic and diabatic flow conditions. It has been found from the review of the literature that there is a lot more to investigate for the flow of various refrigerants through different capillary tube geometries.  相似文献   

6.
A mathematical model is developed to study flow characteristics in non-adiabatic capillary tubes. The theoretical model is based on conservation of mass, energy and momentum of fluids in the capillary tube and suction line. The mathematical model is categorized into three different cases, depending on the position of the heat exchange process. The first case is considered when the heat exchange process starts in the single-phase flow region, the second case is determined when the heat exchange process starts at the end of the single-phase flow region, and the last case is considered when the heat exchange process takes place in the two-phase flow region. A set of differential equations is solved by the explicit method of finite-difference scheme. The model is validated by comparing with the experimental data obtained from previous works. The results obtained from the present model show reasonable agreement with the experimental data. The present non-adiabatic capillary tube model can be used to integrate with system models working with alternative refrigerants for design and optimization.  相似文献   

7.
This paper experimentally investigated the system performance of a split-type air conditioner matching with different coiled adiabatic capillary tubes for HCFC22 and HC290. Experiments were carried out in a room-type calorimeter. The results have shown that (1) similar cooling effects can be achieved by matching various capillary tubes of different inner diameters; (2) parallel capillary tubes presented better system performance and flow stability with weaker inlet pressure fluctuations than the single capillary tube; (3) with the coil diameter of the capillary tube increasing from 40 mm to 120 mm, the mass flow rate tended to increase slightly. But the cooling capacity, input power and energy efficiency ratio (EER) did not show evident tendency of change; (4) the refrigerant charge and mass flow rate for HC290 were only 44% and 47% of that for HCFC22, respectively, due to the much lower density. And HC290 had 4.7–6.7% lower cooling capacity and 12.1–12.3% lower input power with respect to HCFC22. However, the EER of HC290 can be 8.5% higher than that of HCFC22, which exhibits the advantage of using HC290. In addition, the experimental uncertainties were analyzed and some application concerns of HC290 were discussed.  相似文献   

8.
Experiments are performed to investigate the single-phase flow and flow-boiling heat transfer augmentation in 3D internally finned and micro-finned helical tubes. The tests for single-phase flow heat transfer augmentation are carried out in helical tubes with a curvature of 0.0663 and a length of 1.15 m, and the examined range of the Reynolds number varies from 1000 to 8500. Within the applied range of Reynolds number, compared with the smooth helical tube, the average heat transfer augmentation ratio for the two finned tubes is 71% and 103%, but associated with a flow resistance increase of 90% and 140%, respectively. A higher fin height gives a higher heat transfer rate and a larger friction flow resistance. The tests for flow-boiling heat transfer are carried out in 3D internally micro-finned helical tube with a curvature of 0.0605 and a length of 0.668 m. Compared with that in the smooth helical tube, the boiling heat transfer coefficient in the 3D internally micro-finned helical tube is increased by 40-120% under varied mass flow rate and wall heat flux conditions, meanwhile, the flow resistance is increased by 18-119%, respectively.  相似文献   

9.
Assumptions that no metastable flow phenomenon and flow in two-phase region is homogeneous have been used exclusively to study the flow characteristics in capillary tubes used as an expansion and controlling device in refrigerating systems. However, some experimental results show that due to the delay of vapourization, the onset of vapourization may not take place at the end of the sub-cooled liquid region. The two-phase flow in small diameter tubes may be also not entirely homogeneous due to phase interaction. In this paper, a mathematical model based on conservations of mass, energy and momentum is presented to simulate the refrigerant flow in adiabatic capillary tubes. Different from most previous studies, the metastable flow region is accounted in the model and the annular flow is also assumed to take place in the two-phase region. The model is validated by comparing with the experimental data reported in literature. The agreement between experimental and simulation results indicates that the model with appropriate correlations of pressure at vapourization and slip ratio can be used to predict the two-phase flow behaviour of refrigerant in capillary tubes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
A detailed one-dimensional steady and transient numerical simulation of the thermal and fluid-dynamic behaviour of capillary tube expansion devices working with pure and mixed refrigerants has been developed. The discretised governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpy, temperatures, pressures, vapour quality, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretised. The numerical model allows analysis of aspects such as geometry, type of fluid (pure substances and mixtures), critical or non-critical flow conditions, metastable regions, adiabatic or non-adiabatic capillary tubes and transient aspects. Comparison of the numerical simulation with experimental data presented in the technical literature will be shown in part II of the present article.  相似文献   

11.
Correlations for the evaporation heat transfer coefficient and two-phase friction factor of R-134a flowing through horizontal corrugated tubes are proposed. In the present study, the test section is a horizontal counter-flow concentric tube-in-tube heat exchanger with R-134a flowing in the inner tube and hot water flowing in the annulus. Smooth tube and corrugated tubes with inner diameters of 8.7 mm and lengths of 2000 mm are used as the inner tube. The corrugation pitches are 5.08, 6.35, and 8.46 mm and the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The outer tube is made from smooth copper tube with an inner diameter of 21.2 mm. The correlations presented are formed by using approximately 200 data points for five different corrugated tube geometries and are then proposed in terms of Nusselt number, equivalent Reynolds number, Prandtl number, corrugation pitch and depth, and inside diameter.  相似文献   

12.
《Applied Thermal Engineering》2007,27(5-6):1062-1071
The objective of this study is to extend and validate the model developed and presented in previous works [O. García-Valladares, C.D. Pérez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part I: mathematical formulation and numerical model, Applied Thermal Engineering 22 (2) (2002) 173–182; O. García-Valladares, C.D. Pérez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part II: experimental validation and parametric studies, Applied Thermal Engineering 22 (4) (2002) 379–391] to coiled adiabatic capillary tube expansion devices working with pure and mixed refrigerants. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, vapor qualities, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid (pure substances and mixtures), critical or non-critical flow conditions, metastable regions, and transient aspects. Comparison of the numerical simulation with a wide range of experimental data presented in the technical literature will be shown in the present article in order to validate the model developed.  相似文献   

13.
Heat transfer and pressure drop characteristics of four microfin tubes were experimentally investigated for condensation of refrigerants R134a, R22, and R410A in four different test sections. The microfin tubes examined during this study consisted of 8.92, 6.46, 5.1, and 4 mm maximum inside diameter. The effect of mass flux, vapor quality, and refrigerants on condensation was investigated in terms of the heat transfer enhancement factor and the pressure drop penalty factor. The pressure drop penalty factor and the heat transfer enhancement factor showed a similar tendency for each tube at given vapor quality and mass flux. Based on the experimental data and the heat-momentum analogy, correlations for the condensation heat transfer coefficients in an annular flow regime and the frictional pressure drops are proposed.  相似文献   

14.
In this paper, an experimental study is presented to enhance our understanding of the capillary tube behaviour using some new alternative refrigerants to HCFC‐22. An experimental setup fully instrumented was used to gather the behaviour of three different capillary tube geometries with R‐410B, R‐407C, and R‐410A under various conditions; saturated, sub‐cooled and two‐phase. Experimental data showed that R‐410B has the highest pressure drop along the capillary tubes compared to the alternatives under question and also has the highest temperature drop along the capillary tube. The data also showed that R‐407C has similar capillary behaviour to that of R‐22. The results clearly demonstrated that the pressure drop is significantly influenced by the diameter of the capillary tube, the type of refrigerant and inlet conditions to the capillary tube. The data also showed that the capillary pressure drop decreases with the increase of the capillary diameter. There is clear evidence that the component concentration of the refrigerant mixture significantly affects the capillary tube behaviour and particularly the pressure drop along the capillary tube length. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
This study investigates the heat transfer characteristics of a horizontal tube-in-tube heat exchanger with a helical wire inserted in the inner tube. The influence of the pitch (or helix angle) of the wire on the heat transfer performance and pressure drop during condensation (having all other geometric parameters the same) was investigated experimentally. Tests were conducted for condensing refrigerants R22, R134a, and R407C at an average saturation temperature of 40°C, with mass fluxes ranging from 300–800 kg/m2s and with vapor qualities ranging from 0.85–0.95 at condenser inlet to 0.05–0.15 at condenser outlet. Measurements were made for three helical wire-inserted tubes with different pitches of 5, 7.77, and 11 mm. The local and average heat transfer coefficients were compared not only with the measured data of a smooth tube, but also with the results of micro-fin tubes. The tube with a helical wire pitch of 5 mm inserts was found to have the highest enhancement factor, which can be elucidated by the extension of the annular flow regime. Heat transfer coefficient correlations for helical wire inserts were deduced, and they predicted the experimental data to within 20%.  相似文献   

16.
《Applied Thermal Engineering》2002,22(16):1801-1819
This paper presents a homogeneous model of refrigerant flow through capillary tube–suction line heat exchangers, which are widely used in small vapour compression refrigeration systems. The homogeneous model is based on fundamental conservation equations of mass, momentum and energy. These equations are solved simultaneously through iterative process. Churchill’s correlation [3] is used to calculate single-phase friction factors and Lin et al. [6] correlation for two-phase friction factors. The single-phase heat transfer coefficient is calculated by Gnielinski’s equation [5] while two-phase flow heat transfer coefficient is assumed to be infinite. The model is validated with previous experimental and analytical results. The present model can be used in either design calculation (calculate the capillary tube length for given refrigerant mass flow rate) or simulation calculation (calculate the refrigerant mass flow rate for given capillary tube length). The simulation model is used to understand the refrigerant flow behaviour inside the non-adiabatic capillary tubes.  相似文献   

17.
《Applied Thermal Engineering》2007,27(16):2713-2726
Enhanced heat transfer surfaces are used in heat exchangers to improve performance and to decrease system volume and cost. In-tube heat transfer enhancement usually takes the form of either micro-fin tubes (of the helical micro-fin or herringbone varieties), or of helical wire inserts. Despite a substantial increase in heat transfer, these devices also cause non-negligible pressure drops.By making use of well-proven flow pattern maps for smooth tubes and the new ones for smooth and enhanced tubes, it is shown from the refrigerant condensation data that flow patterns have a strong influence on heat transfer and pressure drop. This is done for data obtained from in-tube condensation experiments for mass fluxes ranging from 300 to 800 kg/m2 s at a saturation temperature of 40 °C, for refrigerants R-22, R-134a, and R-407C. The flow regimes, pressure drops, heat transfer coefficients, and the overall performance of three different tubes, namely a smooth-, 18° helical micro-fin-, and a herringbone micro-fin tube (each having a nominal diameter of 9.51 mm), are presented and compared to the performance of smooth tubes with helical wire inserts (with pitches of 5 mm, 7.77 mm and 11 mm corresponding to helical angles of 78.2°, 72°, and 65.3°, respectively).  相似文献   

18.
A flow regime based condensation model is developed for refrigerants in single, smooth, horizontal tubes utilizing a generalized probabilistic two-phase flow map. Flow map time fraction information is used to provide a physically based weighting of heat transfer models developed for different flow regimes. The developed model is compared with other models in the literature, with experimentally obtained condensation data of R134a in 8.92 mm diameter tubes, and with data found in the literature for 3.14 mm, 7.04 mm, and 9.58 mm tubes with R11, R12, R134a, R22, R410A, and R32/R125 (60/40% by weight) refrigerants and a wide range of mass fluxes and qualities.  相似文献   

19.
This study investigated the direct relationship between the measured condensation pressure drop and convective heat transfer coefficient of R134a flowing downward inside a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm during annular flow. R134a and water were used as working fluids on the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments were performed at mass fluxes of 260, 300, 340, 400, 456 and 515 kg m−2 s−1 in the high mass flux region of R134a. The condensing temperatures were around 40 and 50 °C; the heat fluxes were between 10.16 and 66.61 kW m−2. Paliwoda’s analysis, which focused mainly on the determination of the two-phase flow factor and two-phase length of evaporators and condensers, was adapted to the in-tube condensation phenomena in the test section to determine the condensation heat transfer coefficient, heat flux, two-phase length and pressure drop experimentally by means of a large number of data points obtained under various experimental conditions.  相似文献   

20.
This study provides a qualitatively visual observation of the two-phase flow patterns for air-water mixtures inside 6.9, 4.95, and 3 mm smooth diameter tubes with the presence of horizontal return bend. The influence of the return bend on the two-phase flow patterns are investigated. For D=6.9 mm and at a mass flux of 50 kg m−2 s−1 having a quality less than 0.1, no influence on the flow patterns is seen at a larger curvature ratio of 7.1. However, were the curvature ratio reduced to 3, the flow pattern in the recovery region is temporarily turned from stratified flow into annular flow. The temporary flow pattern transition phenomenon from stratified flow to annular flow is not so pronounced with the decrease of tube diameter. It is likely that this phenomenon is related to the influence of surface tension and the reduction of developing length of the swirl flow. Based on the present flow visualization, three flow pattern maps are proposed to describe the effect of return bend on the transition of two-phase flow pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号