首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article experimentally investigates a two-phase closed thermosyphon vapor-chamber system for electronic cooling. A thermal resistance net work is developed in order to study the effects of heating power, fill ratio of working fluid, and evaporator surface structure on the thermal performance of the system. The results indicate that either a growing heating power or a decreasing fill ratio decreases the total thermal resistance, and the surface structure also influences the evaporator function prominently. A reasonable agreement with Rohesnow's empirical correlation is found for the evaporator. An optimum overall performance exists at 140 W heating power and 20% fill ratio with sintered surface, and the corresponding total thermal resistance is 0.495 °C W1.  相似文献   

2.
An experimental investigation of the performance of thermosyphons charged with water as well as the dielectric heat transfer liquids FC-84, FC-77 and FC-3283 has been carried out. The copper thermosyphon was 200 mm long with an inner diameter of 6 mm, which can be considered quite small compared with the vast majority of thermosyphons reported in the open literature. The evaporator length was 40 mm and the condenser length was 60 mm which corresponds with what might be expected in compact heat exchangers. With water as the working fluid two fluid loadings were investigated, that being 0.6 ml and 1.8 ml, corresponding to approximately half filled and overfilled evaporator section in order to ensure combined pool boiling and thin film evaporation/boiling and pool boiling only conditions, respectively. For the Fluorinert? liquids, only the higher fill volume was tested as the aim was to investigate pool boiling opposed to thin film evaporation. Generally, the water-charged thermosyphon evaporator and condenser heat transfer characteristics compared well with available predictive correlations and theories. The thermal performance of the water-charged thermosyphon also outperformed the other three working fluids in both the effective thermal resistance as well as maximum heat transport capabilities. Even so, FC-84, the lowest saturation temperature fluid tested, shows marginal improvement in the heat transfer at low operating temperatures. All of the tested Fluorinert? liquids offer the advantage of being dielectric fluids, which may be better suited for sensitive electronics cooling applications and were all found to provide adequate thermal performance up to approximately 30–50 W after which liquid entrainment compromised their performance.  相似文献   

3.
In the current paper, the performance of an external-fin-assisted thermosyphon is investigated experimentally. The thermosyphon is produced with a copper tube and includes three parts—the evaporator, the adiabatic, and the condenser. The condenser part is enhanced with external longitudinal fins. In this study, different number of fins, filling ratios (FRs), coolant flow rates, a wide range of heat inputs, and initial absolute pressures are considered. The experiments are carried out by measurement of temperature distribution of the thermosyphon's wall and the temperature difference of the coolant. The results depict that increasing the heat input and FR reduces the thermal resistance, while raising the coolant flow rate augments the thermal resistance. Adding external fins to the condenser causes further condensation, which enhances the thermosyphon thermal performance by a reduction of 26.32% in thermal resistance and an increment of 28.55% in the thermosyphon efficiency.  相似文献   

4.
This paper reports an experimental investigation of a closed-loop thermosyphon system charged with water and other low saturation fluids, such as ethanol, acetone, and methanol, for different adiabatic lengths, filling ratios, and heat loads. The closed-loop thermosyphon with two inline vertical heaters in the evaporator section and forced air-cooled plate-type heat exchanger in the condenser section, connected by a changeable adiabatic length, is investigated at different working conditions. Out of five filling ratios used in the analysis, at 0.6 filling ratio, the loop thermosyphon is seen to be operated at its best. The acetone-charged loop thermosyphon shows the lowest values (up to 72% reduction) of overall thermal resistance than that of other fluids and significantly higher effectiveness, due to the plate-type forced air-cooled condenser. For the acetone-filled thermosyphon, an almost 15% increase in the effectiveness is observed by changing the adiabatic length from 800 to 200 mm. This study suggests that the limitation of the loop thermosyphon with a water-cooled condenser to cool electronic components, computational clusters, and data centers is well fulfilled by the loop thermosyphon with plate-type forced air-cooled condenser. The nucleate pool boiling correlation is developed and validated for the loop thermosyphon system to determine the evaporator heat transfer coefficient.  相似文献   

5.
In this investigation an advanced thermosyphon loop with extended evaporator and condenser surfaces has been tested at high heat fluxes. The thermosyphon investigated is designed for the cooling of three parallel high heat flux electronic components. The tested evaporators were made from small blocks of copper in which five vertical channels with a diameter of 1.5 mm and length of 14.6 mm were drilled. The riser and downcomer connected the evaporators to the condenser, which is an air-cooled roll-bond type with a total surface area of 1.5 m2 on the airside. Tests were done with Isobutane (R600a) at heat loads in the range of 10–90 W/cm2 to each of the components with forced convection condenser cooling and with natural convection with heat loads of 10–70 W.  相似文献   

6.
This study investigates the issues involved in the design of a compact two-phase thermosyphon in which the locations of evaporator and condenser need a high degree of freedom. Enhancement of boiling heat transfer in the compact evaporator space was achieved by a microfabricated structure. Anticipating situations where gravity does not provide sufficient potential to drive the condensate, a pump-assisted circulation loop was studied. The relative height between the evaporator and condenser and the pumping rate were systematically varied by utilizing two thermosyphon loops. Close examination of the data suggests that there could be an optimum point in the parametric domain where the thermal resistance is minimized with least assistance from the pump.  相似文献   

7.
An experimental investigation was performed on the thermal performance of an oscillating heat pipe (OHP) charged with base water and spherical Al2O3 particles of 56 nm in diameter. The effects of filling ratios, mass fractions of alumina particles, and power inputs on the total thermal resistance of the OHP were investigated. Experimental results showed that the alumina nanofluids significantly improved the thermal performance of the OHP, with an optimal mass fraction of 0.9 wt.% for maximal heat transfer enhancement. Compared with pure water, the maximal thermal resistance was decreased by 0.14 °C/W (or 32.5%) when the power input was 58.8 W at 70% filling ratio and 0.9% mass fraction. By examining the inner wall samples, it was found that the nanoparticle settlement mainly took place at the evaporator. The change of surface condition at the evaporator due to nanoparticle settlement was found to be the major reason for the enhanced thermal performance of the alumina nanofluid-charged OHP.  相似文献   

8.
In this study, a thermally driven adsorption cooling unit using natural zeolite–water as the adsorbent–refrigerant pair has been built and its performance investigated experimentally at various evaporator temperatures. The primary components of the cooling unit are a shell and tube adsorbent bed, an evaporator, a condenser, heating and cooling baths, measurement instruments and supplementary system components. The adsorbent bed is considered to enhance the bed’s heat and mass transfer characteristics; the bed consists of an inner vacuum tube filled with zeolite (zeolite tube) inserted into a larger tubular shell. Under the experimental conditions of 45 °C adsorption, 150 °C desorption, 30 °C condenser and 22.5 °C, 15 °C and 10 °C evaporator temperatures, the COP of the adsorption cooling unit is approximately 0.25 and the maximum average volumetric cooling power density (SCPv) and mass specific cooling power density per kg adsorbent (SCP) of the cooling unit are 5.2 kW/m3 and 7 W/kg, respectively.  相似文献   

9.
This paper reports on an indirect cooling method of high‐power CPU of notebook computers using a closed‐loop two‐phase thermosyphon with Fluorinert (FC‐72) as the working fluid. The experimental setup consists of an evaporator with an electric heater, a condenser, and flexible tube connecting them. The heater and condenser act as a high‐power CPU and a cooling plate located behind the display of a notebook computer, respectively. The evaporator and the condenser have the outer dimensions of 50mm × 50mm × 20mm and 150mm × 200mm × 20mm, respectively. Four possible boiling surfaces of an evaporator were examined, i.e., a smooth surface (Type A), rough one, ones with smooth plate fins and rough plate fins (Type D). Type D evaporator shows the highest performance, i.e., it reduces the temperature at the evaporator/heater interface by about 18% in comparison with that of the smooth surface evaporator (Type A). Type D evaporator keeps the temperature difference between the evaporator/heater interface and the ambient to be around 55 K at the highest heat input Q = 30W. The effects of the heat input Q, the volumetric amount of Fluorinert liquid F in the thermosyphon, and the evaporator type on the heat transfer characteristics of the cooling system were examined experimentally. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(3): 147–159, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20057  相似文献   

10.
In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH.  相似文献   

11.
The closed-loop thermosyphon (CLT) has advantages of simple structure and reliability for transporting heat in long distances with small decrease in temperature. It is considered a promising cooling device for power electronics onboard ships. In this research, CLT for cooling of power electronics onboard ship was developed, and the performance was experimentally examined using a CLT apparatus. The performance was investigated for steady-state heat transfer under a wide range of pressures and heat loads from 18.3 kPa to 35.3 kPa and from 88.9 W to 616.2 W, respectively. The fill charge rates were 27% and 45%. The circulation coolant temperature at the condenser was set to 15°C. The measured data for each rated heat input were registered by a data logger in every 5-s increment of sampling data for a 30-min period. During the steady-state operation, CLT could maintain the system pressure and produced the vapor bulk temperature at around saturation boiling regime. The temperature distributions of the system were measured from each probed thermocouple along the loop. It is understood that higher heat inputs around above 349 W could keep the bulk vapor in an almost constant temperature from evaporation process up to the inlet position of the condenser. The condenser of the direct hull cooling method could also maintain the condensation process with a temperature decrease of around 30°C from the inlet vapor temperature of the condenser. It was clarified that the CLT has good thermal performance in the higher heat loads with low thermal resistance and provides a steady circulation loop from each two-phase process of heating in the evaporator and cooling during condensation.  相似文献   

12.
This paper reports the effect of different adiabatic lengths on the thermal performance of loop thermosyphon with different filling ratios (FRs) and heat inputs. The carbon steel thermosyphon loop for three different adiabatic lengths is used in this analysis. The loop with plate-type, forced air-cooled condenser, along with two vertical inline evaporators, is filled and tested with distilled water. The transient and steady-state analyses are carried out to understand the thermal behavior of the loop. The thermal resistance is found to be lowest at 800-mm adiabatic length and 60% FR. The geyser boiling phenomenon is also noticed in the present thermosyphon loop. The period of oscillation and temperature fluctuations in the evaporator and condenser increase with the adiabatic length. The geyser boiling phenomenon may disappear at a very small adiabatic length of the loop thermosyphon with forced air-cooled condenser. This paper proposes a mathematical model for the loop thermosyphon in terms of the Nusselt number, the Reynolds number, the Prandtl number, and the adiabatic length-to-diameter ratio, and the comparative study shows that proposed model validates the experimental results. Also, it is found that the adiabatic length-to-diameter ratio inversely varies with the Nusselt number.  相似文献   

13.
In this study, the heat transfer characteristics of a two-phase closed thermosyphon were investigated. For the test, a two-phase closed thermosyphon (copper container, FC-72 (C6F14) working fluid) was fabricated with a reservoir which could change the fill charge ratio. The experiments were performed in the range of 50-600 W heat flow rate and 10-70% fill charge ratio. Some findings are as follows.The heat transfer coefficients of the evaporator to the fill charge ratio were nearly negligible. These presented about 1-5 kW/m2 K with the increase of heat flux and compared with those of smooth surface, showed some enhancement by the grooved surface. However at the condenser, the heat transfer coefficients showed some enhancement with the increase of fill charge ratio by the expanded working fluid pool. And the heat transport limitations appeared in different ways to the fill charge ratio. For the relatively small fill charge ratio (Ψ<20%), it presented about 100 W (Ψ: 10%) by the dry-out limitation.For the large fill charge ratio, it occurred by the flooding limitation and the maximum heat flow rate was about 500-550 W (Bo: 26-28), 230 W (Bo: 18.3) respectively and the Kutateladze number was about 1.9-2.1.  相似文献   

14.
The characteristic of an integral type solar-assisted heat pump water heater (ISAHP) is investigated in the present study. The ISAHP consists of a Rankine refrigeration cycle and a thermosyphon loop that are integrated together to form a package heater. Both solar and ambient air energies are absorbed at the collector/evaporator and pumped to the storage tank via a Rankine refrigeration cycle and a thermosyphon heat exchanger. The condenser releases condensing heat of the refrigerant to the water side of the thermosyphon heat exchanger for producing a natural-circulation flow in the thermosyphon loop. A 105-liter ISAHP using a bare collector and a small R134a reciprocating-type compressor with rated input power 250 W was built and tested in the present study. The ISAHP was designed to operate at an evaporating temperature lower than the ambient temperature and a matched condition (near saturated vapor compression cycle and compressor exhaust temperature <100°C). A performance model is derived and found to be able to fit the experimental data very well for the ISAHP. The COP for the ISAHP built in the present study lies in the range 2.5–3.7 at water temperature between 61 and 25°C.  相似文献   

15.
In this study, refrigerants R22 and R404A five of their binary mixtures which contain about 0%, 25%, 50%, 75% and 100% mass fractions of R404A were tested. It is investigated experimentally the effects of gas mixture rate, evaporator air inlet temperature (from 24 to 32 °C), evaporator air mass flow rate (from 0.58 to 0.74 kg/s), condenser air inlet temperature (from 22 to 34 °C) and condenser air mass flow rate (from 0.57 to 0.73 kg/s) on the coefficient of performance (COP) and exergetic efficiency values of vapor compression heat-pump systems. To determine the effect of the chosen parameters on the system and optimum working conditions, an experimental design method suggested by Genichi Taguchi was used. In this study, it was observed that the most effective parameters are found to be the condenser air inlet temperature for COP and exergetic efficiency.  相似文献   

16.
The effect of the axial conduction through the pipe wall on the performance of a thermosyphon was experimentally investigated in this study. Two 2-phase closed thermosyphons were tested; each had the same dimensions, materials and partially filled with R134a. The only difference between them was that one had a thermal break within the adiabatic section that resisted axial conduction between the evaporator and the condenser sections. The thermosyphons were heated by a constant-temperature hot bath and cooled by water via a concentric heat exchanger. The experiments were performed for different bath temperatures and different fill ratios. It was found that the axial conduction through the pipe wall caused an increase in the overall heat transfer coefficient, evaporation heat transfer coefficient and condensation heat transfer coefficient of the thermosyphon. However, the fraction of heat transfer associated with axial conduction decreased as the heat flux increased. For small heat flux (Tb = 30 °C), the increment of the evaporation and condensation heat transfer coefficient contributed by axial conduction reached 100% and 25%, respectively. For high heat flux (Tb = 60 °C), the increment was negligible (less than 1%).  相似文献   

17.
PERFORMANCE OF A HEAT PUMP USING DIRECT EXPANSION SOLAR COLLECTORS   总被引:1,自引:0,他引:1  
Theoretical and experimental studies were made on the thermal performance of a heat pump that used a bare flat-plate collector as the evaporator. The analysis used empirical equations to express the electric power consumption of the compressor and coefficient of performance (COP), as functions of temperature of evaporation at the evaporator and that of the heat transfer medium (water) at the inlet of the condenser. The experimental heat pump had a compressor with a rated capacity of 350 W and collectors with the total area of 3.24 m2. Around noon in winter the evaporator temperature was found to be about 17°C higher than the ambient air temperature of 8°C, and a COP of about 5.3 was obtained when the water temperature at the condenser inlet was 40°C. These measured evaporation temperatures and COPs were in good agreement with those predicted by the analysis. According to the analysis, the total area of the collectors in the experiment was appropriate for the heat pump system. Also, the 1-mm thickness of the collector's copper plate used in the experiment could be 0.5 mm with little reduction of COP. The pitch of the tube soldered to the copper plate for the refrigerant flow was 100 mm in the experiment, but the COP would only be reduced by about 4% if the pitch were changed to 190 mm.  相似文献   

18.
The thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger was investigated to show its applicability in China. The effect on the performance of the collector of using a heat exchanger between the collector and the tank was analyzed. A “heat exchanger penalty factor” for the system was determined and energy balance equation in the system was presented. Outdoor tests of thermal performance of the thermosyphon flat-plate solar water heater with a mantle heat exchanger were taken in Kunming, China. Experimental results show that mean daily efficiency of the thermosyphon flat plate solar water heater with a mantle heat exchanger with 10 mm gap can reach up to 50%, which is lower than that of a thermosyphon flat-plate solar water heater without heat exchanger, but higher than that of a all-glass evacuated tubular solar water heater.  相似文献   

19.
A flat loop heat pipe (FLHP) with bi-transport loops is developed for the cooling of graphics card with high heat flux up to 80W/cm2. The evaporator and the pipes are made of copper and ultrapure water (electronic resistivity > 18 MΩ-cm) as the working fluid. To give the loop heat pipe (LHP) better performance, the evaporator is made in a flat shape to reduce the contact resistance between the evaporator and the chip. The advances of the LHP with bi-transport loops are discussed. The heat transfer performance is tested with different filling rate in different orientations. The test results show that the LHP can start up easily and can transport large amount of heat stably. The orientation of the condenser above the evaporator gives a better performance, and filling with 13 g of water gives a better performance. Limited by the evaporator temperature lower than 90°C, the LHP can transport 320 W when the evaporator is above the condenser and 380 W when the condenser is above the evaporator.  相似文献   

20.
A mathematical model of evaporation and condensation heat transfer in a copper-water wicked heat pipe with a sintered-grooved composite wick is developed and compared with experiments. The wall temperatures are measured under different input power levels and working temperature conditions. The results show that the heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The experimental data for the boiling heat transfer are well correlated by the theory of Stralen and Cole. Higher heat load drives the heat pipe to spend more time achieving the equilibrium state during the transient start-up process. The response curves of the evaporator thermal resistance are overlapped, and the condenser thermal resistance increases more sharply at the beginning. The total thermal resistance of the heat pipe ranges from 0.02 to 0.56 K/W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号