首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
喷嘴距离和喷嘴角度对油膜附壁的影响   总被引:1,自引:0,他引:1  
为研究进气道燃油喷射汽油机内喷嘴距离和喷嘴角度对燃油碰壁形成的附壁油膜的影响,采用激光诱导荧光法,研究了不同喷嘴距离和喷嘴角度下的附壁油膜厚度二维分布规律.结果表明,喷嘴角度越小,附壁油膜厚度较大的区域越向下游移动,油膜较厚区域的范围越大,油膜的最大厚度越小.喷嘴距离越大,附壁油膜的厚度越薄.  相似文献   

2.
建立了附壁油膜计算模型,研究了进气道喷射摩托车汽油机燃油落点位置、燃油喷射距离及燃油喷射量等参数对起动工况循环内附壁油膜挥发量的影响.分布在进气阀背面上部与进气道交界处附壁油膜挥发速度较大,如果喷射距离过长,部分燃油会分布到温度较低的进气道壁面.导致附壁油膜挥发速度降低.燃油循环喷射量存在一限值:喷射量低于该限值时,循环内附壁油膜挥发量随喷射量的增加而增加;高于该限值时,附壁油膜挥发量随喷射量的增加而减少.  相似文献   

3.
在当前发动机轻量化和高喷射压力的趋势下,采用多孔喷油器的缸内直喷汽油机容易发生喷雾坍塌和燃油碰壁,并在活塞表面形成附壁油膜.为了研究燃油温度对碰壁特性的影响,采用折射率匹配法,系统考察不同燃 油温度下的喷雾碰壁的宏观形态,分析油膜厚度分布和蒸发过程.研究表明:低燃油温度未发生闪沸条件下,各雾束对应的油膜独立、厚度较大且...  相似文献   

4.
建立了进气道喷射式汽油机模型,采用数值计算的方法研究了进气回流对燃油挥发量的影响.结果表明,采用闭阀喷射模式时,气缸内部高温燃气的回流使得附壁油膜表面能够得到更多的热量,有利于提高附壁油膜挥发量;采用开阀喷射模式时,气缸内部的高温燃气的回流与喷雾相互作用,促进了燃油的空间挥发,燃油空间挥发油量增大.  相似文献   

5.
3维燃油喷雾碰壁数学模型   总被引:1,自引:0,他引:1  
贺萍  刘永长 《内燃机学报》1996,14(3):332-339
根据实际燃油喷雾碰壁的物理过程,基于单液滴碰壁后的性态特征,本文提出了在3维喷雾模拟框架下的一种新的喷雾碰壁数学模型,描述了碰壁液滴反弹、形成附壁射流、裂化以及油膜蒸发的现象。利用本文提出的数学模型对燃油垂直碰壁进行模拟计算,结果与高速阴影和纹影摄影图像比较吻合。  相似文献   

6.
由喷射燃油撞壁产生的进气道内油膜是导致过渡工况空燃比控制偏差的主要原因。本文对小型汽油机进气道内燃油雾化和蒸发模型进行了分析,总结出了影响油滴油膜形成和蒸发的主要因素。  相似文献   

7.
利用发动机台架试验,对二次燃油喷射技术在摩托车汽油机上的应用进行了研究。结果表明:进气道喷射式摩托车汽油机存在附壁油膜以液体形式进入气缸的现象。发动机性能与附壁油膜挥发量有直接关系,节气门开度较小时,喷油时刻推迟将导致附壁油膜挥发时间变短,从而减少附壁油膜挥发量,使发动机的功率下降、排放恶化;节气门开度较大时,机体温度较高、进气流速较大,改变喷油时刻对发动机动力及排放性能基本无影响;膨胀冲程喷射燃油所占比例较大时,附壁油膜挥发量较大,发动机动力性能较好。  相似文献   

8.
基于AVLFIRE软件建立柴油喷雾及碰壁仿真计算模型,以定容燃烧弹中喷雾碰壁试验得出的数据为基础对模型进行标定与校核,然后对不同壁面温度条件下的喷雾碰壁特性进行仿真计算,得出了不同壁面温度时燃油的气相、液相和附壁油膜质量随时间的变化规律.结果表明:喷雾碰壁之前,液相质量随时间的增加而增加,碰壁之后,液相质量随时间的增加而减少;壁面温度对空间液相质量的分布及其随时间的变化规律影响不大;随着壁面温度升高,喷油结束之前气相质量随时间增加的速率稍有增加,而喷油结束之后气相质量随时间增加的速率明显增加,附壁油膜达到最大质量的变化速率降低,达到最大质量后,附壁油膜随时间减小的速率增加.  相似文献   

9.
运用激光诱导荧光法(LIF)定量分析了缸内直喷汽油机单孔喷油器喷雾撞壁的二维油膜特性。研究发现:燃油在壁面上向油膜铺展的方向聚集,并在边缘形成较厚的油膜。高喷射压力有助于形成质量较小且厚度较薄的油膜,同时减小喷射脉宽能进一步降低燃油附壁率。增加撞壁距离能同时减小油膜质量和油膜面积,然而油膜的平均厚度并未减小,对油膜蒸发并没有明显的促进作用。将喷射角度从15°增加到45°能够显著减少油膜质量和平均厚度。  相似文献   

10.
直喷汽油机缸内喷雾湿壁问题研究   总被引:4,自引:2,他引:2  
直喷汽油机的湿壁问题会导致机油稀释,燃油经济性下降及尾气排放增加。但通过喷雾、燃烧室及缸内流场三者合理匹配与优化可以大大减少燃油湿壁。利用激光诊断技术对某直喷喷油器的喷雾特性进行全面测试,然后标定三维CFD软件中的喷雾模型,对缸内喷雾和混合气形成过程进行仿真计算,并研究了燃油喷射策略对燃油湿壁的影响。研究结果表明:采用两段喷射策略可以降低15%的碰壁量,混合气均匀程度基本不变;采用三段喷射可以降低27%的碰壁量,并可明显改善混合气浓度分布。  相似文献   

11.
直喷汽油机气门积碳的成因与对策研究   总被引:1,自引:0,他引:1  
针对在用汽油直喷发动机出现的气门积碳现象,对比缸内直喷汽油机与进气道喷射汽油机气门积碳组分与成因的差异,分析了缸内直喷汽油机进气门积碳的主要形成机理、影响因素和生成途径,其中气门表面温度、机油的物理和化学性能起了关键作用。在上述分析基础上,探讨了在发动机设计与应用层面减少进气门积碳的措施。  相似文献   

12.
汤文生 《内燃机》2009,(3):9-11
对汽油机改装为天然气,汽油两用燃料发动机的供气系统在动力性、经济性及排放性能方面进行了比较分析,传统的混合器式天然气发动机对空燃比难以实现高精度的控制,采用电控缸外进气阀处多点喷射系统可以明显改善发动机经济性和排放性能,得到较高的功率输出。  相似文献   

13.
采用台架试验和数值计算的方法研究了开阀喷射模式对发动机性能的影响规律。研究结果表明:在20%节气门开度下,较早的喷油时刻与较晚的喷油时刻相比,功率升高了0.2kW,HC排放降低了30×10~(-6);当节气门开度达到100%时,由于进气气流和机体温度的影响使得喷油时刻对动力性和排放性能的影响可以忽略;处于20%节气门开度时未挥发燃油最大比例大约占总喷油量的50%,而在100%节气门开度下未挥发燃油仅占15%左右,可见燃油未完全挥发是造成开阀喷射模式时发动机性能下降的主要原因,提高开阀喷射模式下发动机燃油挥发性能是提升发动机性能的主要途径。  相似文献   

14.
Numerous studies have demonstrated the advantages of hydrogen as a fuel for Otto Cycle engines due to high thermal efficiency and low exhaust pollutant levels. Characteristic of hydrogen engine operation using premixed intake charge formation is a problem of pre-ignition resulting in an intake manifold “backfire”. Additional problems include high NOx production when using certain equivalence ratios and power output degradation due to low fuel energy/volume density.Techniques for direct and port fuel injection are discussed as means for overcoming these problems. Emphasis is placed on the need for total engine control, integrating control of fuel injection, ignition timing, intake air throttling, and vehicle subsystems within a central electronic unit. An electronically actuated fuel injection valve and a prototype electronic control system are developed. These are applied in port and direct injection system geometries, and evaluated in engine testing. System effectiveness and feasibility are discussed.  相似文献   

15.
Homogenous charge compression ignition (HCCI) engines feature high thermal efficiency and ultralow emissions compared to gasoline engines. However, unlike SI engines, HCCI combustion does not have a direct way to trigger the in-cylinder combustion. Therefore, gasoline HCCI combustion is facing challenges in the control of ignition and, combustion, and operational range extension. In this paper, an active fuel design concept was proposed to explore a potential pathway to optimize the HCCI engine combustion and broaden its operational range. The active fuel design concept was realized by real time control of dual-fuel (gasoline and n-heptane) port injection, with exhaust gas recirculation (EGR) rate and intake temperature adjusted. It was found that the cylinderto- cylinder variation in HCCI combustion could be effectively reduced by the optimization in fuel injection proportion, and that the rapid transition process from SI to HCCI could be realized. The active fuel design technology could significantly increase the adaptability of HCCI combustion to increased EGR rate and reduced intake temperature. Active fuel design was shown to broaden the operational HCCI load to 9.3 bar indicated mean effective pressure (IMEP). HCCI operation was used by up to 70% of the SI mode load while reducing fuel consumption and nitrogen oxides emissions. Therefore, the active fuel design technology could manage the right fuel for clean engine combustion, and provide a potential pathway for engine fuel diversification and future engine concept.  相似文献   

16.
The in-cylinder hydrogen fuel injection method (diesel engine) induces air during the intake stroke and injects hydrogen gas directly into the cylinder during the compression stroke. Fundamentally, because hydrogen gas does not exist in the intake pipe, backfire, which is the most significant challenge to increasing the torque of the hydrogen port fuel injection engine, does not occur. In this study, using the gasoline fuel injector of a gasoline direct-injection engine for passenger vehicles, hydrogen fuel was injected at high pressures of 5 MPa and 7 MPa into the cylinder, and the effects of the fuel injection timing, including the injection pressure on the output performance and efficiency of the engine, were investigated. Strategies for maximizing engine output performance were analyzed.The fuel injection timing was retarded from before top dead center (BTDC) 350 crank angle degrees (CAD) toward top dead center (TDC). The minimum increase in the best torque ignition timing improved, and the efficiency and excess air ratio increased, resulting in an increase in torque and decrease in NOx emissions. However, the retardation of the fuel injection timing is limited by an increase in the in-cylinder pressure. By increasing the fuel injection pressure, the torque performance can be improved by further retarding the fuel injection timing or increasing the fuel injection period. The maximum torque of 142.7 Nm is achieved when burning under rich conditions at the stoichiometric air-fuel ratio.  相似文献   

17.
进气压力对汽油低温压燃的影响   总被引:1,自引:1,他引:0  
在一台装有电液可变气门的单缸柴油机上,通过改变进气压力,研究了不同喷油正时和内部废气再循环(EGR)率下汽油压燃的燃烧特性和排放特性,并对实现汽油燃料高效清洁稳定低温燃烧(如平均指示压力循环波动系数5%,NOx排放低于0.4g/(kW·h),烟度低于0.1FSN,CO和HC排放尽可能低)的控制区间进行了探索研究。内部EGR通过排气门两次开启实现,发动机转速和循环喷油量分别固定为1 500r/min和28mg。研究结果表明,基于燃油早喷、较低内部EGR率和适量进气压力(0.12MPa)的协同控制可以使辛烷值为93的汽油在平均指示压力约为0.47MPa的工况下实现高效清洁燃烧。  相似文献   

18.
Lean combustion is an effective way for improving the spark-ignited (SI) engine performance. Unfortunately, due to the narrow flammability of gasoline, the pure gasoline-fueled engines sometimes suffer partial burning or misfire at very lean conditions. Hydrogen has many excellent combustion properties that can be used to extend the gasoline engine lean burn limit and improve the gasoline engine performance at lean conditions. In this paper, a 1.6 L port fuel injection gasoline engine was modified to be a hybrid hydrogen–gasoline engine (HHGE) fueled with the hydrogen–gasoline mixture by mounting an electronically controlled hydrogen injection system on the intake manifolds while keeping the original gasoline injection system unchanged. A self-developed hybrid electronic control unit (HECU) was used to flexibly adjust injection timings and durations of gasoline and hydrogen. Engine tests were conducted at 1400 rpm and a manifolds absolute pressure (MAP) of 61.5 kPa to investigate the performance of an HHGE at lean burn limits. Three hydrogen volume fractions in the total intake gas of 1%, 3% and 4.5% were adopted. For a specified hydrogen volume fraction, the gasoline flow rate was gradually reduced until the engine reached the lean burn limit at which the coefficient of variation in indicated mean effective pressure (COVimep) was 10%. The test results showed that COVimep at the same excess air ratio was obviously reduced with the increase of hydrogen enrichment level. The excess air ratio at the lean burn limit was extended from 1.45 of the original engine to 2.55 of the 4.5% HHGE. The engine brake thermal efficiency, CO, HC and NOx emissions at lean burn limits were also improved for the HHGE.  相似文献   

19.
对进气口喷射汽油机进气门处传热过程进行了分析,建立了进气油膜吸附壁面温度模型.通过冷机状态起动试验和温升过程数据分析,对已有模型结构进行了细化和改进,并基于试验数据及MATLAB参数辨识工具箱对模型参数进行了辨识.根据模型结构及试验数据,分析了油膜吸附壁面温度的关键影响因素和影响规律,以及不同掺混比例乙醇汽油下的差异.油膜吸附壁面温度变化规律类似一阶惯性系统特性,其温升时间常数可视为进气流量的单值函数,但稳态项与多个发动机工况参数有关,而不同乙醇汽油下油膜吸附壁面温度则差异不大.改进与辨识后油膜吸附壁面温度模型在纯汽油及掺醇汽油下均具有较高的预测精度,可直接用于油膜动态补偿器设计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号