首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The central nucleus of the amygdala is interconnected with a variety of visceral and autonomic nuclei of the brainstem. These include the parabrachial nucleus, the nucleus of the solitary tract, the nucleus ambiguus and the dorsal motor nucleus of the vagus. Despite repeated attempts, neurochemical characterization of the major subcortical connections of the central nucleus has not yet been accomplished. Based on earlier immunohistochemical and in situ hybridization evidence indicating the presence of numerous GABAergic neurons in the macaque monkey central nucleus, we predicted that a sizeable portion of the descending projections may be GABAergic. We tested this hypothesis using a novel double labelling method with gold conjugated WGA-apoHRP as a retrograde tracer and in situ hybridization for detecting the mRNA that encodes the enzyme glutamic acid decarboxylase (GAD67) as a marker for GABAergic cells. Following WGA-apoHRP-gold injections into the brainstem, a large number of retrogradely labelled cells was observed in the medial and lateral divisions of the central nucleus. Of the retrogradely labelled cells observed in the medial division of the central nucleus, approximately half were double-labelled for GAD67 mRNA; about 30% double labelling was observed in the lateral division. These data support the view that a sizeable component of the central nucleus projection to the brainstem is GABAergic.  相似文献   

4.
Within the basal forebrain, gamma-aminobutyric acid (GABA)-synthesizing neurons are codistributed with acetylcholine-synthesizing neurons (Gritti et al. [1993] J. Comp. Neurol. 329:438-457), which constitute one of the major forebrain sources of subcortical afferents to the cerebral cortex. In the present study, descending projections of the GABAergic and cholinergic neurons were investigated to the lateral posterior hypothalamus (LHp) through which the medial forebrain bundle passes and where another major forebrain source of subcortical afferents is situated. Retrograde transport of cholera toxin b subunit (CT) from the LHp was combined with immunohistochemical staining for glutamic acid decarboxylase (GAD) and choline acetyl transferase (ChAT) using a sequential peroxidase-antiperoxidase (PAP) technique. A relatively large number of GAD+ neurons (estimated at approximately 6,200), which represented > 15% of the total population of GAD+ cells in the basal forebrain (estimated at approximately 39,000), were retrogradely labeled from the LHp. These cells were distributed through the basal forebrain cell groups, where ChAT+ cells are also located, including the medial septum and diagonal band nuclei, the magnocellular preoptic nucleus, and the substantia innominata, with few cells in the globus pallidus. In these same nuclei, a small number of ChAT+ cells were retrogradely labeled (estimated at approximately 800), which represented only a small percentage (< 5%) of the ChAT+ cell population in the basal forebrain (estimated at approximately 18,000). Both the GAD+ and ChAT+ LHp-projecting neurons represented a small subset of their respective populations in the basal forebrain, distinct from the magnocellular, presumed cortically projecting, basal neurons. In addition to the GAD+ cells in the basal forebrain, GAD+ cells in the adjacent preoptic and anterior hypothalamic regions were also retrogradely labeled in significant numbers (estimated at approximately 5,500) and proportion (> 20%) of the total population (estimated at approximately 30,000) from the LHp. The retrogradely labeled GAD+ neurons were distributed in continuity with those in the basal forebrain through the lateral preoptic area, medial preoptic area, bed nucleus of the stria terminals, and anterior and dorsal hypothalamic areas. Of the large number of cells that project to the LHp in the basal forebrain and preoptic-anterior hypothalamic regions (estimated at approximately 66,000), the GAD+ neurons represented a significant proportion (> 15%) and the ChAT+ neurons a very small proportion (approximately 2%). The relative magnitude of the GABAergic projection suggests that it may represent an important inhibitory influence of the descending efferent output from the basal forebrain and preoptic-anterior hypothalamic regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The present study examined projections of GABAergic and cholinergic neurons from the basal forebrain and preoptic-anterior hypothalamus to the "intermediate" part of the mediodorsal nucleus of the thalamus. Retrograde transport from this region of the mediodorsal nucleus was investigated using horseradish peroxidase-conjugated wheatgerm agglutinin in combination with peroxidase-antiperoxidase immunohistochemical staining for glutamic acid decarboxylase and choline acetyltransferase. A relatively large number of retrogradely-labelled glutamic acid decarboxylase-positive neurons are located in the basal forebrain, amounting to more than 7% of the total population of glutamic acid decarboxylase-positive cells in this region. Moreover, retrogradely-labelled choline acetyltransferase-positive cells are interspersed among glutamic acid decarboxylase-positive neurons, accounting for about 6% of the total choline acetyltransferase-positive cell population in the basal forebrain. The glutamic acid decarboxylase-positive and choline acetyltransferase-positive retrogradely-labelled neurons are distributed throughout several regions of the basal forebrain, including the medial septum, the diagonal band of Broca, the magnocellular preoptic nucleus, the substantia innominata pars anterior, the substantia innominata pars posterior, and the globus pallidus where only a few retrogradely-labelled neurons were seen. The choline acetyltransferase-positive mediodorsal-projecting neurons are morphologically different from the choline acetyltransferase-positive neurons in the basal forebrain, suggesting that those projecting to the mediodorsal nucleus are a small proportion of the cholinergic neuronal population in the basal forebrain. In the preoptic-anterior hypothalamus, many retrogradely-labelled glutamic acid decarboxylase-positive cells were found, amounting to more than 7% of the total population of glutamic acid decarboxylase-positive cells in this region. These retrogradely-labelled glutamic acid decarboxylase-positive neurons are distributed throughout the preoptic-anterior hypothalamus in a continuous line with those in the basal forebrain, including the lateral preoptic area, the medial preoptic area, the bed nucleus of the stria terminalis, and the anterior and dorsal hypothalamic areas. The highest percentage of mediodorsal-projecting GABAergic neurons is in the anterior lateral hypothalamus where more than 25% of the total population of glutamic acid decarboxylase-positive cells project to the mediodorsal nucleus of the thalamus. Overall, of the large population of retrogradely-labelled neurons in the basal forebrain and preoptic-anterior hypothalamus, a significant proportion are glutamic acid decarboxylase-positive neurons (> 60% in the basal forebrain and > 30% in the preoptic-anterior hypothalamus), while the choline acetyltransferase-positive neurons amount to a smaller percentage of the neurons projecting to the mediodorsal nucleus (< 13% in the basal forebrain and < 2% in the preoptic-anterior hypothalamus). These results provide anatomical evidence of direct GABAergic projections from the basal forebrain and preoptic-anterior hypothalamic regions to the "intermediate" part of the mediodorsal nucleus in the cat. This GABAergic projection field could be the direct pathway by which the basal forebrain directly modulates thalamic excitability and may also be involved in mechanisms modulating electroencephalographic synchronization and sleep through the "intermediate" mediodorsal nucleus.  相似文献   

6.
The midline thalamic nuclei have been known to send projection fibres to the ventral striatum and the autonomic/limbic-associated areas of the prefrontal cortex. In the present study, we sought to determine whether or not single midline thalamic neurons project both to the ventral striatum and to the cerebral cortical areas. Experiments were performed on chloral hydrate-anaesthetized male Sprague Dawley rats; two fluorescent retrograde tracers were centred on the medial or lateral part of the nucleus accumbens--the major part of the ventral striatum--and the medial or lateral prefrontal viscerolimbic cortex. Our retrograde double-labelling study revealed that a subset of midline thalamic neurons send projection fibres to both the nucleus accumbens and the cerebral cortex. Such neurons projecting to both targets were principally identified in the paraventricular thalamic nucleus. The majority of the dually-labelled neurons in the paraventricular thalamic nucleus projected to the lateral part of the nucleus accumbens and the medial wall of the prefrontal cortex. Dually-labelled neurons were additionally found in other midline nuclei, including the paratenial, intermediodorsal, rhomboid, and reuniens nuclei, as well as in the medial part of the parafascicular thalamic nucleus. Dually-projecting neurons identified in the present study may represent a potential link between the limbic striatum and the viscerolimbic-associated cortex, thus suggesting that non-discriminative information relayed to the prefrontal cortex might exert an influence through the same neurons on the nucleus accumbens implicated in affective behaviour.  相似文献   

7.
The receptive field properties of neurons in the medial terminal nucleus of the accessory optic system (MTN) that project to the ipsilateral nucleus of the optic tract (NOT) and dorsal terminal nucleus (DTN), as identified by antidromic electrical activation, were analysed in the anaesthetized rat. The great majority (88%) of MTN neurons that were antidromically activated from NOT and DTN preferred downward directed movement of large visual stimuli while the remaining cells preferred upward directed stimulus movement. Distinct retrograde tracer injections into the NOT/DTN and the ipsilateral inferior olive (IO) revealed that no MTN neurons project to both targets. MTN neurons projecting to the ipsilateral NOT/DTN were predominantly found in the ventral part of the MTN, whereas those projecting to the IO were found in the dorsal part of the MTN. In situ hybridization for glutamic acid decarboxylase (GAD) mRNA was used as a marker for GABAergic neurons. Up to 98% of MTN neurons retrogradely labelled from the ipsilateral NOT/DTN also expressed GAD mRNA. Earlier studies have shown that MTN neurons that prefer upward directed stimulus movements are segregated from MTN neurons that prefer downward directed stimulus movements. It also has been demonstrated that directionally selective neurons in the NOT/DTN prefer horizontal stimulus movements and receive an inhibitory input from ipsilateral MTN. Our results indicate that this input is mediated by GABAergic cells in the ventral part of MTN, which to a large extent prefer downward directed stimulus movements, and that the great majority of MTN neurons that prefer upward directed stimulus movements project to other targets one of which possibly is the IO.  相似文献   

8.
The aim of the present study was to determine the afferent connections of the nucleus accumbens in snakes, in particular its catecholaminergic input. For that purpose, in vitro and in vivo applications of retrograde tracers in the nucleus accumbens of Elaphe guttata were combined with tyrosine hydroxylase (TH) immunohistochemistry. Both techniques revealed telencephalic inputs to the nucleus accumbens originating from the diagonal band of Broca, ventral pallidum, amygdaloid complex, and dorsal cortex. Major diencephalic inputs arise from the dorsomedial thalamic nucleus and the hypothalamus. In the brainstem, a few retrogradely labeled cells were observed in the raphe nucleus and the locus coeruleus. Considerably more cells were found in the midbrain tegmentum. Within the confines of the locus coeruleus and, in particular, the midbrain tegmentum, retrogradely labeled cells stained also for TH suggesting that those areas constitute the major catecholaminergic input to the nucleus accumbens of snakes. The experimental approach used in the present study, in particular the in vitro technique, seems to be very suited for studying the development of basal ganglia organization of reptiles in the near future.  相似文献   

9.
Serotonin2 receptors have been implicated in a variety of behavioral and physiological processes, as well as a number of neuropsychiatric disorders. To specify the brain regions and specific cell types possessing serotonin2 receptors, we conducted an immunocytochemical study of the rat brain using a polyclonal serotonin2 receptor antibody. Perfusion-fixed rat brain sections were processed for immunocytochemistry and reactivity was visualized using an immunoperoxidase reaction. Numerous small, round neurons were heavily labeled in the granular and periglomerular regions of the olfactory bulb. Heavy labeling of medium-sized multipolar and bipolar neurons was also seen in olfactory regions of the ventral forebrain, including the anterior olfactory nucleus and olfactory tubercle. Other regions of the basal forebrain exhibiting high levels of immunoreactivity were the nucleus accumbens, ventral pallidum, Islands of Calleja, fundus striatum and endopyriform nucleus. Immunoreactive neurons were also seen in the lateral amygdala. A dense band of small, round cells was stained in layer 2 of pyriform cortex. In neocortex, a very sparse and even distribution of bipolar and multipolar neurons was seen throughout layers II-VI. A much more faintly labeled population of oval cells was observed in the deep layer of retrosplenial and posterior cingulate cortex, and in the granular layer of somatosensory frontoparietal cortex. A moderate number of medium bipolar and multipolar cells were scattered throughout the neostriatum, and a moderate number of pyramidal and pyramidal-like cells were seen in the CA fields of the hippocampus. Diencephalic areas showing immunolabeling included the medial habenula and anterior pretectal nucleus, with less labeling in the ventral lateral geniculate. In the hindbrain, two dense populations of large multipolar cells were heavily labeled in the pedunculopontine and laterodorsal tegmental nuclei, with lesser labeling in the periaqueductal gray, superior colliculus, spinal trigeminal nucleus and nucleus of the solitary tract. Based on the distribution, localization and morphology of immunoreactive neurons in these regions, we hypothesize that subpopulations of serotonin2 containing cells may be GABAergic interneurons or cholinergic neurons. Further, the observed distribution suggests that the physiological effects of serotonin acting through serotonin2 receptors are mediated by a relatively small number of cells in the brain. These observations may have strong functional implications for the pharmacological treatment of certain neuropsychiatric disorders.  相似文献   

10.
Using a retrograde axonal transport method, direct projections to the neostriatum were demonstrated from the dorsal raphe nucleus, a large area of the ventral midbrain tegmentum (including the ventral tegmental area of Tsai, the substantia nigra pars compacta, reticulata and suboculomotoria), and the tegmentum ventral to the caudal red nucleus. A direct projection was also found from the mediodorsal part of the substantia nigra to the rostral part of the dorsal raphe nucleus. Projections from the entopeduncular nucleus (pallidum) and the lateral hypothalamic area to the lateral habenular nucleus, and from the latter to the dorsal raphe nucleus were also found. This habenular projection arises primarily from large neurons in the medial part of the lateral habenula and also from another group of small cells immediately adjacent to the medial habenular nucleus. A non-reciprocal connection of the dorsal raphe nucleus to the locus coernuleus was also found. On the basis of these results and the data available in the literature on the possible neurotransmitters used by these various structures, it is suggested that the dorsal raphe nucleus may play an important role in brain stem modulation of neostriatal function.  相似文献   

11.
The ventral pallidum receives major inputs from the nucleus accumbens, a striatal region related to the prefrontal cortex. The ventral pallidum, through its projections to the mediodorsal nucleus of the thalamus, has been considered as the main output structure of the prefrontal-basal ganglia circuits. However, as shown recently, the ventral pallidum also sends efferents to the subthalamic nucleus and the substantia nigra, suggesting that it could participate in intrinsic basal ganglia circuits. The aim of the present investigation was to determine the position of the ventral pallidum in the prefrontal-basal ganglia circuit originating from the prelimbic and medial orbital areas. Following injections of biocytin (an anterograde tracer) into the region of the core of the nucleus accumbens receiving excitatory inputs from the prelimbic and medial orbital areas, axonal terminal fields were observed in a delineated dorsal region of the ventral pallidum. When the biocytin injections were made into this ventral pallidal region, anterogradely labelled fibres were observed in both the dorsomedial substantia nigra pars reticulata and the medial subthalamic nucleus, but not in the mediodorsal nucleus of the thalamus. Confirming these anatomical observations, electrical stimulation of the core of the nucleus accumbens induced an inhibition of the spontaneous activity (D=34.9+/-13.3 ms, L=9.2+/-3.3 ms) in 46.5% of the ventral pallidal cells. Among these responding cells, 43% were antidromically driven from the subthalamic nucleus, 30% from the substantia nigra pars reticulata and only 6% from the mediodorsal nucleus of the thalamus. These data demonstrate that the region of the ventral pallidum involved in the prefrontal cortex-basal ganglia circuit originating from the prelimbic and medial orbital areas represents essentially a ventral subcommissural extension of the external segment of the globus pallidus since it exhibits similar extrinsic connections and functional characteristics. In conclusion, in this prelimbic and medial orbital channel, the ventral pallidum cannot be considered as a major output structure but is essentially involved in intrinsic basal ganglia circuits.  相似文献   

12.
Nerve growth factor (NGF) supports the survival and biosynthetic activities of basal forebrain cholinergic neurons and is expressed by neurons within lateral aspects of this system including the horizontal limb of the diagonal bands and magnocellular preoptic areas. In the present study, colormetric and isotopic in situ hybridization techniques were combined to identify the neurotransmitter phenotype of the NGF-producing cells in these two areas. Adult rat forebrain tissue was processed for the colocalization of mRNA for NGF with mRNA for either choline acetyltransferase, a cholinergic cell marker, or glutamic acid decarboxylase, a GABAergic cell marker. In both regions, many neurons were single-labeled for choline acetyltransferase mRNA, but cells containing both choline acetyltransferase and NGF mRNA were not detected. In these fields, virtually all NGF mRNA-positive neurons contained glutamic acid decarboxylase mRNA. The double-labeled cells comprised a subpopulation of GABAergic neurons; numerous cells labeled with glutamic acid decarboxylase cRNA alone were codistributed with the double-labeled neurons. These data demonstrate that in basal forebrain GABAergic neurons are the principal source of locally produced NGF.  相似文献   

13.
The distribution of a metabotropic glutamate receptor mGluR2 in the central nervous system was immunohistochemically examined in the rat and mouse with a monoclonal antibody raised against an N-terminal sequence of rat mGluR2 (amino acid residues 87-134). Neuronal cell bodies with mGluR2-like immunoreactivity (mGluR2-LI) were clearly shown in the horizontal cells of Cajal in the cerebral cortex, neurons in the triangular septal nucleus and medial mammillary nucleus, Golgi cells and the unipolar brush cells in the cerebellar cortex, and Golgi-like and unipolar brush-like cells in the cochlear nucleus. Neuropil was intensely immunostained in the accessory olfactory bulb, bed nucleus of the accessory olfactory tract, neocortex, cingulate cortex, retrosplenial cortex, subicular and entorhinal cortices, stratum lacunosum-moleculare of CA1 and CA3, molecular layer of the dentate gyrus, periamygdaloid cortex, basolateral amygdaloid nucleus, bed nucleus of the anterior commissure, caudate-putamen, accumbens nucleus, thalamic reticular nucleus, anteroventral and paraventricular thalamic nuclei, granular layer of the cerebellar cortex, anterior and ventral tegmental nuclei, granular layer of the cochlear nucleus, and parvicellular part of the lateral reticular nucleus. Many axons in the white matter and fiber bundles were also immunostained. No glial cells with mGluR2-LI were found. No particular species differences were found in the distribution pattern of mGluR2-LI between the rat and mouse. The results indicate that mGluR2 is expressed not only in somato-dendritic domain, but also in axonal domain of excitatory and inhibitory neurons.  相似文献   

14.
Biotinylated dextran amine was injected unilaterally into dorsal regions of the telencephalon of the weakly electric fish Gymnotus carapo in order to study the afferent and efferent connections of specific dorsal regions with ventral regions of the telencephalon and with other regions of the central nervous system. Efferent pathways from the dorsolateral area of the telencephalon project ipsilaterally to the anterior hypothalamic nucleus, the ventral thalamus and magnocellular tegmental nucleus, whose axons reach the spinal cord. Anterograde labeling showed that the central division of the dorsal telencephalon sends efferent projections through the lateral forebrain bundle towards the ipsilateral lateral and medial preglomerular nucleus, the pretectal nucleus, the optic tectum and the dorsal torus semicircularis, regions that are all involved in the processing of electrosensory and/or multisensory information. In addition, when biotinylated dextran amine was injected into the dorsal torus semicircularis, retrogradely labeled neurons were observed in the dorsocentral area of the telencephalon. The dorsocentral area is also a target of the extra-telencephalic afferents originating from rostral, lateral and medial regions of preglomerular complex. Within the telencephalon, neurons of many ventral subdivisions project ipsilaterally to the dorsocentral area. The dorsocentral, dorsolateral and dorsomedial areas are connected ipsilaterally and reciprocally. The dorsocentral area is reciprocally connected with its contralateral homologue through the anterior commissure.  相似文献   

15.
The projections of the septum of the lizard Podarcis hispanica (Lacertidae) were studied by combining retrograde and anterograde neuroanatomical tracing. The results confirm the classification of septal nuclei into three main divisions. The nuclei composing the central septal division (anterior, lateral, medial, dorsolateral, and ventrolateral nuclei) displayed differential projections to the basal telencephalon, preoptic and anterior hypothalamus, lateral hypothalamic area, dorsal hypothalamus, mammillary complex, dorsomedial anterior thalamus, ventral tegmental area, interpeduncular nucleus, raphe nucleus, torus semicircularis pars laminaris, reptilian A8 nucleus/substantia nigra and central gray. For instance, only the medial septal nucleus projected substantially to the thalamus whereas the anterior septum was the only nucleus projecting to the caudal midbrain including the central gray. The anterior and lateral septal nuclei also differ in the way in which their projection to the preoptic hypothalamus terminated. The midline septal division is composed of the dorsal septal nucleus, nucleus septalis impar and nucleus of the posterior pallial commissure. The latter two nuclei projected to the lateral habenula and, at least the nucleus of the posterior pallial commissure, to the mammillary complex. The dorsal septal nucleus projected to the preoptic and periventricular hypothalamus and the anterior thalamus, but its central part seemed to project to the caudal midbrain (up to the midbrain central gray). Finally, the ventromedial septal division (ventromedial septal nucleus) showed a massive projection to the anterior and the lateral tuberomammillary hypothalamus. Data on the connections of the septum of P. hispanica and Gecko gekko are discussed from a comparative point of view and used for better understanding of the functional anatomy of the tetrapodian septum.  相似文献   

16.
The pontine parabrachial nucleus, which is a key structure in the central processing of autonomic, nociceptive and gustatory information, is rich in a variety of neuropeptides. In this study we have analysed the distribution of parabrachial neurons that express preproenkephalin messenger RNA, which encodes for the precursor protein for enkephalin opioids. Using an in situ hybridization method, we found that preproenkephalin messenger RNA-expressing neurons were present in large numbers in four major areas of the parabrachial nucleus: the K?lliker-Fuse nucleus, the external lateral subnucleus, the ventral lateral subnucleus, and in and near the internal lateral subnucleus. Many preproenkephalin messenger RNA-expressing neurons were also seen in the central lateral subnucleus, and in the medial and external medial subnuclei. Few labeled neurons were found in the dorsal and superior lateral subnuclei. Injection of the retrograde tracer substance cholera toxin subunit B into the midline and intralaminar thalamus demonstrated that the enkephalinergic neurons in and near the internal lateral subnucleus were thalamic-projecting neurons. Taken together with the results of previous tract-tracing studies, the present findings show that many of the enkephalinergic cell groups in the parabrachial nucleus are located within the terminal zones of the ascending projections that originate from nociresponsive neurons in the medullary dorsal horn and spinal cord, as well as from viscerosensory neurons within the nucleus of the solitary tract. The enkephalinergic neurons in the parabrachial nucleus may thus transmit noci- and visceroceptive-related information to their efferent targets. On the basis of the present and previous observations, we conclude that these targets include the intralaminar and midline thalamus, the ventrolateral medulla and the spinal cord. Through these connections, nociceptive and visceroceptive stimuli may influence several functions, such as arousal, respiration and antinociception.  相似文献   

17.
Inhibition of neurons containing gamma-aminobutyric acid (GABA) may underlie some of the excitatory effects of opioids in the central nervous system (CNS). In the present study, we examined the relationship of the cloned mu- and delta-opioid receptors (MOR1 and DOR1, respectively) to GABAergic neurons in brain and spinal cord. This was done by combining immunofluorescent staining for MOR1 or DOR1 with that for GABA or glutamic acid decarboxylase (GAD); fluorescent retrograde tract-tracing was used in some cases to identify neurons with particular projections. In rats, cells double labeled for GABA and MOR1 were observed in layers II-VI of the parietal cortex and in layers II-IV of the piriform cortex. In the hippocampus, double labeling was observed in the dentate gyrus and in regions CA1 and CA3. Double labeling was very prominent in the striatum and in the reticular nucleus of the thalamus; it was also observed in other portions of the diencephalon. However, double labeling for GABA and MOR1 was never observed in the cerebellar cortex. Cells double labeled for GABA and MOR1 were common in the periaqueductal gray (PAG) and the medial rostral ventral medulla (RVM) of both rats and monkeys, suggesting that involvement of GABAergic neurons with supraspinal opioid antinociception may extend to primates. In the RVM of rats, many of those double-labeled neurons were retrogradely labeled from the dorsal spinal cord. In contrast, double-labeled neurons in the PAG were almost never retrogradely labeled from the RVM. No unequivocal examples of double labeling for DOR1 and GAD were found in any region of the CNS that we examined in either rats or monkeys. However, GABAergic neurons were often apposed by DOR1 immunoreactive varicosities. Our findings suggest that activation of mu-opioid receptors directly modulates the activity of GABAergic neurons throughout the CNS, including neurons involved in the supraspinal component of opioid analgesia. In contrast, delta-opioid receptors appear to be positioned to modulate the activity of GABAergic neurons indirectly.  相似文献   

18.
Localization of preganglionic neurons of the accessory ciliary ganglion (ACG), including ectopic intraocular ganglion cells, was investigated in the cat with the aid of horseradish peroxidase (HRP) and HRP-conjugated wheat germ agglutinin (WGA-HRP) methods. When HRP or WGA-HRP was injected into the anterior and posterior chambers of the eye, no retrogradely labeled cells were found in the visceral oculomotor nuclei, although most neurons of the ACG and the main ciliary ganglion (CG) were intensely labeled. When a microsyringe needle was inserted into the ciliary body, the tracer diffused into the suprachoroid lamina and the intraocular ganglion cells, and a small number of labeled neurons appeared in the midplane between each side of the somatic oculomotor nuclei. After injection into the ACG, many labeled neurons were observed in the anteromedian nucleus, Edinger-Westphal nucleus, and midplane between the somatic oculomotor nuclei, their ventral continuations of the ventral tegmental area, and the periaqueductal gray. HRP/WGA-HRP injection into the CG labeled cells in all these areas and in the lateral border zones of the anteromedian, Edinger-Westphal and somatic oculomotor nuclei, and their ventral continuations of the ventral tegmental area. These findings indicate that the visceral oculomotor neurons which project to the ACG tend to be located more medially than those to the CG.  相似文献   

19.
NMDA receptors are composed of proteins from two families: NMDAR1 and NMDAR2. We used quantitative double-label in situ hybridization to examine in rat brain the expression of NMDAR1, NMDAR2A, NMDAR2B, and NMDAR2C mRNA in six neurochemically defined populations of striatal neurons: preproenkephalin (ENK) and preprotachykinin (SP) expressing projection neurons, and somatostatin (SOM), glutamic acid decarboxylase 67 (GAD67), parvalbumin (PARV), and choline acetyltransferase (ChAT) expressing interneurons. NMDAR1 was expressed by all striatal neurons: strongly in ENK, SP, PARV and ChAT neurons, and less intensely in SOM and GAD67 positive cells. NMDAR2A mRNA was present at moderate levels in all striatal neurons except those containing ChAT. Labeling for NMDAR2B was strong in projection neurons and ChAT interneurons, and only moderate in SOM, GAD67 and PARV interneurons. NMDAR2C was scarce in striatal neurons, but a low level signal was detected in GAD67 positive cells. NMDAR2C expression was also observed in small cells not labeled by any of the markers, most likely glia. These data suggest that all striatal neurons have NMDA receptors, but different populations have different subunit compositions which may affect function as well as selective vulnerability.  相似文献   

20.
To determine the principles of synaptic innervation of neurons in the entopeduncular nucleus and subthalamic nucleus by neurons of functionally distinct regions of the pallidal complex, double anterograde labeling was carried out at both light and electron microscopic levels in the rat. Deposits of the anterograde tracers Phaseolus vulgaris-leucoagglutinin and biotinylated dextran amine were placed in different functional domains of the pallidal complex in the same animals. The tracer deposits in the ventral pallidum and the globus pallidus gave rise to GABA-immunopositive projections to the entopeduncular nucleus, the subthalamic nucleus, and the more medial lateral hypothalamus that were largely segregated but overlapped at the interface between the two fields of projection. In these regions the proximal parts of individual neurons in the entopeduncular nucleus, lateral hypothalamus, and subthalamic nucleus received synaptic input from terminals derived from both the ventral pallidum and the globus pallidus. Furthermore, the analysis of the afferent synaptic input to the dendrites of neurons in the subthalamic nucleus that cross functional boundaries of the nucleus defined by the pallidal inputs, revealed that terminals with the morphological and neurochemical characteristics of those derived from the pallidal complex make synaptic contact with all parts of the dendritic tree, including distal regions. It is concluded that functionally diverse information carried by the descending projections of the pallidal complex is synaptically integrated by neurons of the entopeduncular nucleus, lateral hypothalamus, and subthalamic nucleus by two mechanisms. First, neurons located at the interface between functionally distinct, but topographically adjacent, projections could integrate diverse information by means of the synaptic convergence at the level of the cell body and proximal dendrites. Second, because the distal dendrites of neurons in the subthalamic nucleus receive input from the pallidum, those that extend across two distinct domains of pallidal input could also provide the morphological basis of integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号