首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Throughout the world, coastal resource managers are encouraging the restoration of previously modified coastal habitats back into wetlands and managed ponds for their ecosystem value. Because many coastal wetlands are adjacent to urban centers and waters used for human recreation, it is important to understand how wildlife can affect water quality. We measured fecal indicator bacteria (FIB) concentrations, presence/absence of Salmonella, bird abundance, and physico-chemical parameters in two coastal, managed ponds and adjacent sloughs for 4 weeks during the summer and winter in 2006. We characterized the microbial water quality in these waters relative to state water-quality standards and examined the relationship between FIB, bird abundance, and physico-chemical parameters. A box model approach was utilized to determine the net source or sink of FIB in the ponds during the study periods. FIB concentrations often exceeded state standards, particularly in the summer, and microbial water quality in the sloughs was generally lower than in ponds during both seasons. Specifically, the inflow of water from the sloughs to the ponds during the summer, more so than waterfowl use, appeared to increase the FIB concentrations in the ponds. The box model results suggested that the ponds served as net wetland sources and sinks for FIB, and high bird abundances in the winter likely contributed to net winter source terms for two of the three FIB in both ponds. Eight serovars of the human pathogen Salmonella were isolated from slough and pond waters, although the source of the pathogen to these wetlands was not identified. Thus, it appeared that factors other than bird abundance were most important in modulating FIB concentrations in these ponds.  相似文献   

2.
Arsenic speciation and distribution in an arsenic hyperaccumulating plant   总被引:31,自引:0,他引:31  
Arsenic-contaminated soil is one of the major arsenic sources for drinking water. Phytoremediation, an emerging, plant-based technology for the removal of toxic contaminants from soil and water, has been receiving renewed attention. Although a number of plants have been identified as hyperaccumulators for the phytoextraction of a variety of metals, and some have been used in field applications, no hyperaccumulator for arsenic had been previously reported until the recent discovery of Brake fern (Pteris vittata), which can hyperaccumulate arsenic from soils. This finding may open a door for phytoremediation of arsenic-contaminated soils. Speciation and distribution of arsenic in the plant can provide important information helpful to understanding the mechanisms for arsenic accumulation, translocation, and transformation. In this study, plant samples after 20 weeks of growth in an arsenic-contaminated soil were used for arsenic speciation and distribution study. A mixture of methanol/water (1:1) was used to extract arsenic compounds from the plant tissue. Recoveries of 85 to 100% were obtained for most parts of the plant (rhizomes, fiddle heads, young fronds and old fronds) except for roots, for which extraction efficiency was approximately 60%. The results of this study demonstrate the ability of Brake fern as an arsenic hyperaccumulator. It transfers arsenic rapidly from soil to aboveground biomass with only minimal arsenic concentration in the roots. The arsenic is found to be predominantly as inorganic species; and it was hypothesized that the plant uptakes arsenic as arsenate [As(V)I and arsenate was converted to arsenite [As(III)] within the plant. The mechanisms of arsenic uptake, translocation, and transformation by this plant are not known and are the objectives of our on-going research.  相似文献   

3.
The results of using the nitrogen fixing symbiotic system AzollaAnabaena to improve the quality of treated urban wastewater, particularly on what concerns phosphorus removal efficiencies (40–65%), obtained in continuous assays performed during the past few years and presented earlier, were very promising. Nevertheless, the presence of combined nitrogen in some wastewaters can compromise the treatment efficiency. The main goal of this work was to compare plants behaviour in wastewater and in mineral media with and without added nitrogen.Azolla filiculoides's specific growth rates in wastewater and in mineral media without added nitrogen or with low nitrate concentration were very similar (0.122 d−1–0.126 d−1), but decreased in the presence of ammonium (0.100 d−1). The orthophosphate removal rate coefficients were similar in all the growth media (0.210 d−1–0.232 d−1), but ammonium removal rate coefficient in wastewater was higher (0.117 d−1) than in mineral medium using that source of nitrogen (0.077 d−1).The ammonium present in wastewater, despite its high concentration (34 mg N L−1), didn't seem to inhibit growth and nitrogen fixation, however, in mineral media, ammonium (40 mg N L−1) was found to induce, respectively, 18% and 46% of inhibition.  相似文献   

4.
The action spectra of Bacillus subtilis spores (ATCC6633) and Salmonella typhimurium LT2 were characterized using physical radiometry for irradiance measurements and a multiple target model to interpret the inactivation kinetics. The observed action spectrum of B. subtilis spores deviated significantly from the relative absorbance spectrum of the DNA purified from the spores, but matched quite well with the relative absorbance spectrum of decoated spores. The action spectrum of B. subtilis spores determined in this study was statistically different from those reported in previous studies. On the other hand, the action spectrum of S. typhimurium bacteria matched quite well with the relative absorbance spectrum of DNA extracted from vegetative cells, except in the region below 240 nm. It is concluded that the common use of the relative DNA absorbance spectrum as a surrogate for the germicidal action spectrum can result in systematic errors when evaluating the performance of a polychromatic UV light reactors using bioassays. For example, if the weighted germicidal fluence (UV dose) calculated using the relative DNA absorbance spectrum as the germicidal weighting factor is found to be 40 mJ cm−2 for a medium pressure lamp UV reactor, that calculated using the relative action spectrum of B. subtilis spores, as determined in this study, would be 66 mJ cm−2.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号