首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
用固体酸HZB作催化剂,在固定床和釜式反应器内,研究了正丁酸和乙醇的酯化反应。结果表明:HZB对正丁酸的酯化是一个有效的催化剂。在固定床反应器内,当反应温度为110℃、n(乙醇)/n(正丁酸)=5、LHSV=5h-1时,正丁酸的转化率可达99%以上。  相似文献   

2.
《精细石油化工》2017,(1):11-16
以锂、钙、镁、铝的硝酸盐为原料,以尿素为沉淀剂,采用沉淀焙烧的方法制备了Li-Ca-Mg-Al-O固体碱催化剂。采用单因素实验考察了制备条件对催化剂活性的影响,得到制备优化条件为:元素配比n(Li)∶n(Ca)∶n(Mg)∶n(Al)=1∶2∶1∶1,焙烧温度800℃,焙烧时间6.5h。将优化条件下制备的Li-Ca-Mg-AlO固体碱用于催化蓖麻油和甲醇的酯交换反应,在n(醇)∶n(油)=9,m(催化剂)∶m(油)=0.04,搅拌速率为550r/min,反应温度为65℃,反应时间为3h的条件下,蓖麻油转化率可达85.7%。采用Hammett指示剂滴定法、TG、BET、XRD及SEM对催化剂及其前驱体进行了表征。结果表明:Li-Ca-Mg-Al-O固体碱的碱强度为7.2~11.2;Li-Ca-Mg-Al类水滑石在温度超过800℃后质量不再随温度升高而变化;Li-Ca-Mg-Al-O固体碱催化剂比表面积为11.93m~2/g、孔容为0.031 7cm~3/g,主要由CaO、MgO及Al_2O_3三种晶体组成。  相似文献   

3.
新型碳基固体酸催化剂在酯化反应中的催化性能研究   总被引:2,自引:0,他引:2  
通过膨化淀粉和对甲基苯磺酸混合物的部分炭化制备新型碳基固体强酸催化剂,研究新型碳基固体酸催化剂在油酸与乙醇的酯化反应中的催化性能,考察乙醇与油酸比、催化剂用量和反应时间等因素的影响。XRD分析和酸碱电位滴定结果表明,膨化淀粉和对甲基苯磺酸混合物的部分炭化生成含高密度-SO3H基的芳香碳薄层组成的无定形碳。新型碳基固体强酸在油酸与乙醇的酯化反应中具有较好的催化活性。在乙醇与油酸摩尔比为8、催化剂与油酸质量比为5.0%、回流反应6 h的条件下,油酸乙酯收率可达到83.78%。催化剂重复使用7次,活性下降很小。  相似文献   

4.
花生壳固体酸催化剂的制备及其催化酯化性能   总被引:5,自引:1,他引:4  
以花生壳为原料制备了碳基固体酸催化剂,考察了磺化温度、磺化时间、浓硫酸与花生壳的质量比等制备条件对固体酸酸度的影响;用扫描电子显微镜、热重分析、傅里叶变换红外光谱对固体酸进行了表征;评价了固体酸在乙酸与乙醇的酯化反应中的催化活性。实验结果表明,在磺化温度85℃、磺化时间3h、浓硫酸与花生壳质量比15的条件下制备的固体酸的酸度为2.045 0mmol/g,具有较好的催化活性。使用该固体酸催化剂,在乙醇与乙酸的摩尔比为2.05、反应温度70℃、催化剂与乙酸的质量比为0.045、反应时间3.5h的条件下,乙酸转化率达74.8%。  相似文献   

5.
采用共沉淀和高温焙烧的方法制备了Ca-Mg-Zn-Al-O固体碱催化剂,并采用正交实验对催化剂的制备条件进行了优化;通过TG-DTA,BET,XRD,SEM等手段及Hammett指示剂法对催化剂及其前体进行了表征。实验结果表明,正交实验得到的较适宜的制备条件为:陈化温度80℃、陈化时间12 h、焙烧温度700℃、焙烧时间5 h。以在上述优化条件下制备的Ca-Mg-Zn-Al-O固体碱为催化剂,用于蓖麻油与甲醇的酯交换反应,在n(甲醇)∶n(蓖麻油)=9、m(催化剂)∶m(蓖麻油)=0.04、搅拌转速550 r/min、反应温度65℃、反应时间3 h的条件下,蓖麻油的转化率稳定在95%~99%之间。  相似文献   

6.
以地沟油为原料,通过高温热裂解得到高酸值85mg(KOH)/g的裂解油,进而通过催化酯化反应降低热裂解油的酸值。讨论了催化剂种类、甲醇用量等因素对酯化率的影响。结果表明,以自制的S2O8^2-/ZrO2固体超强酸作催化剂,甲醇用量(以裂解油质量计)为30%时,酯化效果最好,可以使裂解油酸值降至2mg(KOH)/g。还考察了催化剂的使用寿命,结果表明,催化剂使用到第3次时,酯化率仍可达到84.8%。酯化后裂解油的燃料油性能有所改善。  相似文献   

7.
催化酯化反应中固体酸催化剂研究进展   总被引:4,自引:0,他引:4  
介绍了国内外对SO4^2-/Mx0y型固体超强酸、沸石催化剂、固体杂多酸和强酸性阳离子交换树脂等固体酸催化剂催化酯化反应的最新研究进展,比较了4类固体酸催化剂的优缺点。重点讨论了SO4^2-/MxOy型固体超强酸的载体和表面促进剂的选择,指出SO4^2-/MxOy型固体酸是催化酯化反应较理想的催化剂。  相似文献   

8.
磁性固体碱催化剂在棕榈油制备生物柴油中的应用研究   总被引:2,自引:0,他引:2  
采用煅烧法制得磁性固体碱催化剂CaO/Fe3O4,考察了该催化剂催化24℃分提棕榈油与甲醇酯交换反应制备生物柴油的最佳反应条件及催化剂使用寿命。结果表明,最佳反应条件为醇油摩尔比8、催化剂用量4%、反应温度65℃、反应时间2.0 h。在该条件下制得的生物柴油中脂肪酸甲酯含量为98.2%,其性能指标均达到国家标准GB/T-20828-2007的要求。在棕榈油制备生物柴油过程中重复利用催化剂CaO/Fe3O4进行酯交换反应8次,产物中脂肪酸甲酯含量均在96.5%以上。  相似文献   

9.
负载型固体碱催化棕榈油酯交换制备生物柴油   总被引:2,自引:0,他引:2  
采用浸渍法制备了KF/CaO,K2CO3/CaO,KF/γ-Al2O3,K2CO3/γ-Al2O34种负载型固体碱催化剂。考察了催化剂种类对棕榈油与甲醇进行酯交换反应的影响,并研究了催化剂重复使用的可能性。实验结果表明,4种催化剂均具有较高的活性,在催化剂中活性组分负载量为20.0%(相对于载体的质量分数)、n(甲醇):n(棕榈油)=12、m(催化剂):m(棕榈油)=0.09、反应温度65℃、反应时间6h的条件下,生物柴油的收率依次为97.3%,93.4%,77.7%,96.2%。以CaO为载体的催化剂再生后活性较低,而以γ-Al2O3为载体的催化剂再生后活性较高。X射线衍射和热重-差热分析结果显示,催化剂活性的差异与煅烧过程中活性组分和载体相互作用形成的新晶相有关,再生后催化活性的降低是由于活性组分流失所致。  相似文献   

10.
微水相超声波协同纳米Ca-Mg-Al固体碱催化制备生物柴油   总被引:7,自引:1,他引:6  
以尿素为沉淀剂制备了纳米Ca-Mg-Al水滑石,采用X射线衍射、傅里叶变换红外光谱和扫描电子显微镜对其进行了表征,以其煅烧后得到的纳米Ca-Mg-Al复合金属氧化物为固体碱催化剂,采用微水相超声波辐射协同固体碱催化小桐子油与甲醇进行酯交换反应制备了生物柴油,并研究了催化剂的失活原因。实验结果表明,纳米Ca-Mg-Al水滑石的柱撑阴离子为CO_3~(2-),晶粒大小均匀,呈良好的层状结构。在超声波功率210W、占空比0.7、反应时间30min、温度60℃、甲醇与小桐子油摩尔比4∶1、催化剂用量1.5%(基于小桐子油的质量)的反应条件下,生物柴油收率达94.3%,精制后的生物柴油完全符合德国生物柴油标准DIN V 51606:1997。催化剂失活的主要原因是层状结构的塌陷和副产物甘油附着在催化剂表面,使用后的催化剂用乙醇洗去表面的甘油后,可连续使用12次。  相似文献   

11.
以对甲基苯磺酸为催化剂,催化光皮树油半成品富烃燃料与甲醇进行酯化反应,考察了甲醇与半成品富烃燃料的摩尔比(简称醇油比)、反应温度、反应时间、催化剂用量等对富烃燃料酸度的影响,同时对酯化前后的试样进行了FTIR表征,并对酯化后的富烃燃料进行了GC—MS分析。得到的适宜反应条件为:醇油比10:1、反应温度80℃、反应时间110 min、催化剂对甲基苯磺酸用量为半成品富烃燃料油质量的0.20%;在此条件下,富烃燃料的酸度(以100 mL试样消耗KOH的质量计)由酯化前的3 400 mg降至酯化后的5.95 mg。FTIR表征和GC-MS分析结果表明,酯化后富烃燃料中的酯类成分含量明显增加,酯化后的富烃燃料较光皮树油生物柴油具有更低的酸值和更高的热值。  相似文献   

12.
微波固体碱法制备生物柴油   总被引:1,自引:0,他引:1  
韩毅  邓宇  郝敬梅  甘灰炉 《石油化工》2007,36(11):1162-1167
研究了微波辐射下,采用KNO3/Al2O3固体碱催化剂,大豆油和甲醇酯交换反应制备生物柴油的工艺。催化剂的最佳制备条件为:KNO3的负载量(质量分数)35%,700℃下焙烧5h。采用傅里叶变换红外光谱、X射线衍射和Hammett滴定对催化剂进行了表征。表征结果显示,KNO3在Al2O3表面分散形成的Al—O—K物种和KNO3高温分解产物K2O为反应提供了活性位。该反应的优化工艺参数:微波输出功率360W,反应时间35min,催化剂质量分数6.0%,甲醇与大豆油的摩尔比13。在该条件下,大豆油的转化率达到97.5%。与水浴加热方式相比,采用微波辐射加热方式,反应时间明显缩短,能耗减少。  相似文献   

13.
Z204催化剂上生物油水相重整制氢反应   总被引:4,自引:3,他引:1  
比较了不使用催化剂和使用商业催化剂Z204时生物油水相重整制氢反应的特点,研究了催化剂的还原时间和反应温度对生物油水相重整制氢反应的影响,考察了催化剂的寿命和反应器阻力增大的原因。实验结果表明,使用Z204催化剂时,H2收率最高可达58%,明显高于不加催化剂时的H2收率;在催化剂还原时间1.0h、反应温度750℃的条件下,反应30min后H2收率达到42%,随后略有下降,在540min的反应时间内H2收率基本维持在35%左右。反应过程中生成的碳渣使反应器阻力增大,碳渣是由积碳和含有Fe,Ca,Al,Pb,Mn,Si,Na,Mg等无机元素的灰分组成的。  相似文献   

14.
针对生物油的化学组成特点,以降低酸性和提高燃烧热为目标,采用催化酯化方法提质生物油。具体方法为:采用微波加热,以732型阳离子交换树脂为催化剂,添加乙醇进行催化酯化反应。适宜的反应条件为:催化剂1.5g,乙醇10mL,生物油5mL,反应时间30min,反应温度70℃,在该条件下乙酸转化率达到62.3%。根据GC-MS分析,提质后生物油的组分得到明显优化,除羧酸转化成酯类外,酮类、醛类和酚类等对生物油性能不利的组分都不同程度被转化。提质后生物油的运动黏度降至粗生物油的70.2%,而燃烧热则比粗生物油提高了17.24%。微波加热与水浴加热相比,达到最大乙酸转化率的时间缩短了约2/3。  相似文献   

15.
SiO_2负载硫酸锆固体酸催化酯化反应   总被引:8,自引:2,他引:8  
采用溶胶-凝胶法制备了SiO2载体,同时采用浸渍法制备了SiO2负载Zr(SO4)2固体酸催化剂(Zr(SO4)2/SiO2),并将其用于催化油酸与乙醇进行酯化反应;考察了催化剂焙烧温度、Zr(SO4)2负载量、n(乙醇)∶n(油酸)、催化剂用量和反应时间对酯化反应的影响。实验结果表明,与Zr(SO4)2催化剂相比,Zr(SO4)2/SiO2催化剂在油酸与乙醇的酯化反应中具有较高的活性。最佳反应条件为:以焙烧温度为250℃制得的Zr(SO4)2负载量为25%的Zr(SO4)2/SiO2为催化剂,n(乙醇)∶n(油酸)=6,催化剂占油酸的质量分数为5.0%,反应时间6h。在此条件下,油酸乙酯的收率可达94.8%。Zr(SO4)2/SiO2催化剂的制备方法简单、活性高,产品收率高,后处理简便,无三废污染,符合节能环保、绿色催化的发展趋势。  相似文献   

16.
固体碱催化碳酸二甲酯和3-戊酮合成丙酸甲酯   总被引:2,自引:0,他引:2  
以碳酸二甲酯(DMC)和3-戊酮为原料,以固体碱为催化剂合成了丙酸甲酯,并考察了反应温度、反应时间、催化剂用量和原料配比等因素对合成反应的影响。实验结果表明,固体酸催化剂不利于丙酸甲酯的生成,而具有中强碱位的MgO对该反应具有较好的催化性能。当以MgO为催化剂时,反应的最佳条件为:反应温度260℃、反应时间5h、催化剂用量占反应物总质量的1.5%、n(DMC)∶n(3-戊酮)=6,在该反应条件下,3-戊酮的转化率和丙酸甲酯的选择性分别达到40.9%和53.9%。同时,反应主要副产物为3-戊酮缩合产物(4-甲基-5-乙基-4-庚烯-3-酮)、甲基化产物(2-甲基-3-戊酮和3-甲氧基-2-戊烯)及中间产物2-甲基丙酰乙酸甲酯等。  相似文献   

17.
通过催化酯化烷基化联立工艺将生物质热解油提质为高品位燃油(简称提质生物油).将提质生物油分别以体积分数5%、10% 和15% 与0#柴油混合,配制成混合燃油B5、B10和B15,在柴油机上评估其燃烧与排放性能.结果表明:当柴油机工作负荷相同时,随着提质生物油体积分数增加,混合燃油的当量比燃油耗逐渐升高,有效热效率逐渐下...  相似文献   

18.
采用浸渍法制备了KF/Al_2O_3固体碱催化剂,并应用在大豆油与甲醇的酯交换反应中,探索了催化剂制备条件和酯交换反应条件;采用SEM,XRD,TG-DTA等方法对催化剂进行了表征。实验结果表明,当KF负载量(基于Al_2O_3载体的质量)为40%时,在773 K下焙烧3 h,可制得催化活性较高KF/Al_2O_3催化剂。XRD与TG-DTA表征结果显示,KF/Al_2O_3催化剂的活性是因KF与Al_2O_3经高温焙烧产生了新的晶相K_3AlF_6。在n(甲醇):n(大豆油)=12:1、催化剂用量(基于大豆油的质量)为3%、回流状态下反应3 h,生物柴油的收率可达83.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号