首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
SiC power Schottky and PiN diodes   总被引:3,自引:0,他引:3  
The present state of SiC power Schottky and PiN diodes are presented in this paper. The design, fabrication, and characterization of a 130 A Schottky diode, 4.9 kV Schottky diode, and an 8.6 kV 4H-SiC PiN diode, which are considered to be significant milestones in the development of high power SiC diodes, are described in detail. Design guidelines and practical issues for the realization of high-power SiC Schottky and PiN diodes are also presented. Experimental results on edge termination techniques applied to newly developed, extremely thick (e.g., 85 and 100 μm) 4H-SiC epitaxial layers show promising results. Switching and high-temperature measurements prove that SiC power diodes offer extremely low loss alternatives to conventional technologies and show the promise of demonstrating efficient power circuits. At sufficiently high on-state current densities, the on-state voltage drop of Schottky and PiN diodes have been shown to be comparable to those offered by conventional technologies  相似文献   

2.
The electrical performance of silicon carbide (SiC) power diodes is evaluated and compared to that of commercially available silicon (Si) diodes in the voltage range from 600 V through 5000 V. The comparisons include the on-state characteristics, the reverse recovery characteristics, and power converter efficiency and electromagnetic interference (EMI). It is shown that a newly developed 1500-V SiC merged PiN Schottky (MPS) diode has significant performance advantages over Si diodes optimized for various voltages in the range of 600 V through 1500 V. It is also shown that a newly developed 5000 V SiC PiN diode has significant performance advantages over Si diodes optimized for various voltages in the range of 2000 V through 5000 V. In a test case power converter, replacing the best 600 V Si diodes available with the 1500 V SiC MPS diode results in an increase of power supply efficiency from 82% to 88% for switching at 186 kHz, and a reduction in EMI emissions  相似文献   

3.
碳化硅MPS:新一代功率开关二极管   总被引:1,自引:0,他引:1  
碳化硅MPS(Merged PiN Schottky diode)具有很好的开关特性,并具有PiN二极管高阻断电压、低漏电流和SBD小开启电压,大导通电流以及高开关速度的优点,是最有希望的新一代功率开关二极管。文章系统地介绍了碳化硅MPS的结构和性能。理论和实验分析表明,碳化硅材料的优异性能与MPS结构的优势相结合,是当今功率开关管发展的趋势。  相似文献   

4.
This paper presents the design and fabrication of an etched implant junction termination extension(JTE) for high-voltage 4H-SiC PiN diodes. Unlike the conventional JTE structure, the proposed structure utilizes multiple etching steps to achieve the optimum JTE concentration range. The simulation results show that the etched implant JTE method can improve the blocking voltage of SiC PiN diodes and also provides broad process latitude for parameter variations, such as implantation dose and activation annealing condition. The fabricated SiC PiN diodes with the etched implant JTE exhibit a highest blocking voltage of 4.5 kV and the forward on-state voltage of 4.6 V at room temperature. These results are of interest for understanding the etched implant method in the fabrication of high-voltage power devices.  相似文献   

5.
碳化硅(SiC)PiN二极管是应用在高压大功率整流领域中的一种重要的功率二极管。受SiC外延材料的载流子寿命限制以及常规SiC PiN二极管较低的阳极注入效率的影响,SiC PiN二极管的正向导通性能较差,这极大限制了其在高压大电流领域的应用。文章提出了一种带P型埋层的4H-SiC PiN二极管,较常规SiC PiN二极管增强了阳极区的少子注入效率,降低了器件的导通电阻,增大了正向电流。仿真结果表明,当正向偏压为5 V时,引入P型埋层的SiC PiN二极管的正向电流密度比常规SiC PiN二极管提升了52.8%。  相似文献   

6.
Current-voltage (I–V) characteristics of n- and p-type 6H−SiC Schottky diodes are compared in a temperature range of room temperature to 400°C. While the room temperature I–V characteristics of the n-type Schottky diode after turn-on is more or less linear up to ∼100 A/cm2, the I–V characteristics of the p-type Schottky diode shows a non-linear behavior even after turn-on, indicating a variation in the on-state resistance with increase in forward current. For the first time it is shown that at high current densities (>125 A/cm2) the forward voltage drop across p-type Schottky diodes is lower than that across n-type Schottky diodes on 6H−SiC. High temperature measurements indicate that while the on-state resistance of n-type Schottky diodes increases with increase in temperature, the on-state resistance of p-type Schottky diodes decreases with increase in temperature up to ∼330 K.  相似文献   

7.
The paper presents a SiC merged PiN Schottky diode model dedicated to the dynamic as-well-as very accurate static simulation. The model takes into account the temperature dependence of device characteristics and combines in a single model the behaviour typical for bipolar and unipolar devices. The presented electro-thermal simulations of the diode produce accurate results, consistent with the measurements. The dynamic model verification has been also presented on the example of a boost power converter.  相似文献   

8.
The performance of the DI segmented collector (SC)-LIGBT is compared to the collector shorted (CS)-LIGBT. The SC-LIGBT allows for adjusting the tradeoff between switching speed and on-state voltage drop by simply changing the P+ collector segment width during device layout. In contrast to previously reported junction isolated (JI) devices, the DI SC-LIGBT was observed to have a turnoff speed similar to the CS-LIGBT with a higher forward drop than the conventional LIGBT. The on-state performance of the integral diodes of the SC-LIGBTs was found to be superior to the integral diode of the CS-LIGBT. The integral diodes of both the CS and the SC-LIGBTs were found to have much superior switching characteristics compared to a lateral PiN diode at the expense of a higher on-state voltage drop. Thus, the superior switching characteristics of the integral diode in the SC-LIGBT complements its fast switching behavior making this device attractive for compact, high frequency, high efficient, power ICs.  相似文献   

9.
碳化硅器件发展概述   总被引:1,自引:0,他引:1  
概要介绍了第三代半导体材料碳化硅(SiC)在高温、高频、大功率器件应用方面的优势,结合国际上SiC肖特基势垒二极管,PiN二极管和结势垒肖特基二极管的发展历史,介绍了SiC功率二极管的最新进展,同时对我国宽禁带半导体SiC器件的研究现状及发展方向做了概述及展望。  相似文献   

10.
The static and dynamic characteristics of large-area, high-voltage 4H-SiC Schottky barrier diodes are presented. With a breakdown voltage greater than 1200 V and a forward current in excess of 6 A at 2 V forward bias, these devices enable for the first time the evaluation of SiC Schottky diodes in practical switching circuits. These diodes were inserted into standard test circuits and compared to commercially available silicon devices, the results of which are reported here. Substituting SiC Schottky diodes in place of comparably rated silicon PIN diodes reduced the switching losses by a factor of four, and virtually eliminated the reverse recovery transient. These results are even more dramatic at elevated temperatures. While the switching loss in silicon diodes increases dramatically with temperature, the SiC devices remain essentially unchanged. The data presented here clearly demonstrates the distinct advantages offered by SiC Schottky rectifiers, and their emerging potential to replace silicon PIN diodes in power switching applications  相似文献   

11.
《Solid-state electronics》2004,48(10-11):1757-1762
Compact silicon carbide (SiC) power semiconductor device models for circuit simulation have been developed for power Schottky, merged-PiN-Schottky, PiN diodes, and MOSFETs. In these models, the static and dynamic performance of the power SiC devices requires specific attention to the low-doped, voltage blocking drift region; the channel transconductance in MOS devices; the relatively low-intrinsic carrier concentration; the incomplete ionization of dopants; and the temperature dependent material properties. The modeling techniques required to account for each of these characteristics are described.  相似文献   

12.
This paper reports the study of the fabrication and characterization results of 10-kilo-volt (kV) 4H-SiC merged PiN/Schottky rectifiers. A metal contact process was developed to make the Schottky contact on n-type SiC and ohmic contact on p-type SiC at the same time. The diodes with different Schottky contact width were fabricated and characterized for comparison. With the improvement quality of the Schottky contact and the passivation layer, the devices show low leakage current up to 10 kV. The on-state characteristics from room temperature to elevated temperature (423 K) were demonstrated and compared between structures with different Schottky contact width.  相似文献   

13.
In order to select the optimal device for a particular application, designers must carefully analyze the tradeoffs between competing devices. Recent progress in SiC power rectifiers has resulted in the demonstration of high-voltage PiN and Schottky barrier diodes (SBDs). With both technologies maturing, power electronics engineers will soon face the task of selecting between these two devices. Until recently, the choice was simple, since silicon SBDs are only available for relatively low voltage applications. The choice is not as clear when considering SiC diodes, and guidelines for determining the proper application of each are needed. The purpose of this paper is to provide such guidelines, based on an analysis of the most significant tradeoffs involved.  相似文献   

14.
南雅公  张志荣  周佐 《微电子学》2011,41(1):146-149
为了增强器件高温条件下的适应性,对4H-SiC双层浮结肖特基势垒功率二极管的温度特性进行了研究.结果表明,当温度变化时,器件的阻断电压、通态电阻、反向漏电流及开关时间等电学性质均要发生一定的变化.作为一种基于浮结技术的sic新器件,通过数值模拟方法对其特征参数进行优化,可使其承载电流能力、阻断特性和开关速度等得到进一步...  相似文献   

15.
This paper presents a study of the performance of high-voltage Si and 4H-SiC diodes in a DC-DC buck converter. Device operation in both hard- and zero-voltage switching conditions is presented with the help of measurements and two-dimensional (2-D) mixed device-circuit simulations. Experimental results show that SiC PiN diodes have a strong potential for use in high-speed high-voltage power electronics applications operating at high temperature. A combination of low excess carrier concentration and low carrier lifetime results in superior switching performance of the 4H-SiC diode over ultrafast Si diodes. Soft switching is shown to minimize the switching loss and allow operation at higher switching frequencies using Si diodes. The power loss of 4H-SiC diodes is dominated by conduction loss. Consequently, soft-switching techniques result in a marginal reduction in power loss. However, the low overall power loss implies that SiC diodes can be used at very high switching frequencies even in hard-switching configurations.  相似文献   

16.
4H–SiC Schottky diodes with and without Junction Terminate Extension (JTE) have been fabricated using Ni for contact and boron for p+ implant. Electrical characterization showed a rectifying behaviour in the on-state. In the reverse mode, the un-terminated Schottky diode demonstrated a breakdown voltage of approximately 200 V, while the JTE structure exhibited a significant improved breakdown performance, and the blocking voltage over 450 V. Optical microscope examination revealed the surface flashover failure located at the metal contact periphery for the un-terminated Schottky diode, while the JTE structure failed in the central area of the metal contact. Both the experimental and theoretical analyses confirmed the JTE structure enhancement on the reliability for SiC Schottky diode performance in reverse mode.  相似文献   

17.
As circuit switching frequency continues to increase, there is a need to produce faster rectifiers with lower power losses. Efficient utilization of high-power ultrafast rectifiers requires precise knowledge of the key static and dynamic switching parameters, especially the reverse-recovery characteristics. Conventional reverse-recovery test circuits were developed to test rectifiers with reverse-recovery times (tRR) greater than 100 ns, however, new measurement techniques are needed for accurate characterization and modeling of the high-power ultrafast rectifier reverse-recovery process. A test circuit topology is proposed which offers several advantages over existing test circuits. This circuit offers the ability to characterize high-power ultrafast rectifiers at very high di/dt and also provides independent control of bias current, reverse voltage and di/dt. This circuit is also studied using a two-dimensional (2-D) mixed device and circuit simulator in which the device under test is represented as a 2-D finite-element grid and the semiconductor equations are solved under boundary conditions imposed by the proposed test circuit. This simulation tool is used to understand the device physics of the reverse-recovery process and develop more accurate models to be implemented in behavioral circuit simulators. The simulation results are then compared to the measured data for a silicon P-i-N and 200-V GaAs Schottky rectifier under various measurement conditions. Simulation results are shown to be in excellent agreement with the measured data  相似文献   

18.
Condition monitoring using temperature sensitive electrical parameters (TSEPs) is widely recognized as an enabler for health management of power modules. The on-state resistance/forward voltage of MOSFETs, IGBTs and diodes has already been identified as TSEPs by several researchers. However, for SiC MOSFETs, the temperature sensitivity of on-state voltage/resistance varies depending on the device and is generally not as high as in silicon devices. Recently the turn-on current switching rate has been identified as a TSEP in SiC MOSFETs, but its temperature sensitivity was shown to be significantly affected by the gate resistance. Hence, an important consideration regarding the use of TSEPs for health monitoring is how the gate driver can be used for improving the temperature sensitivity of determined electrical parameters and implementing more effective condition monitoring strategies. This paper characterizes the impact of the gate driver voltage on the temperature sensitivity of the on-state resistance and current switching rate of SiC power MOSFETs. It is shown that the temperature sensitivity of the switching rate in SiC MOSFETs increases if the devices are driven at lower gate voltages. It is also shown, that depending on the SiC MOSFET technology, reducing the gate drive voltage can increase the temperature sensitivity of the on-state resistance. Hence, using an intelligent gate driver with the capability of customizing occasional switching pulses for junction temperature sensing using TSEPs, it would be possible to implement condition monitoring more effectively for SiC power devices.  相似文献   

19.
与传统硅基功率二极管相比,碳化硅肖特基势垒二极管(SiC SBD)可提高开关频率并大幅减小开关损耗,同时有更高的耐压范围.设计并制作了具有场限环结终端和Ti肖特基接触的1.2 kV/30 A SiC SBD器件,研究了该SiC SBD在100~300℃时的反向恢复特性.实验结果表明,温度每上升100℃,SiC SBD反向电压峰值增幅为5%左右,而反向恢复电流与反向恢复时间受温度影响不大;温度每升高50℃,反向恢复损耗功率峰值降低5%.实验结果表明该SiCSBD在高温下能够稳定工作,且具有良好的反向恢复特性,适用于卫星、航空和航天探测、石油以及地热钻井探测等需要大功率、耐高温和高速器件的领域.  相似文献   

20.
When building single-phase inverter with power Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), switching action may cause poor reverse recovery characteristic due to body parasitic diode of MOSFET, which can produce peak current in the circuit loop and the high transient voltage and current (dv/dt, di/dt) during the turning-on period. In this article, a novel method to reduce the bridge arm current spike in DC-AC inverter is proposed. The presented method uses the improved and simplified coupled inductor which is connected between the upper and lower power devices. The parasitic capacitors of MOSFET are charged and discharged by the coupled inductor and the energy is released in the new loop; therefore, the bridge peak current is diminished. The time-domain model of transient-state analyses is given in detail. The current spike of the main switch is clamped efficiently. By increasing switching frequency, the volume of the magnetic core can be further reduced which is resulted from reduction in the reverse recovery current in parasitic diode. Because of the suppression of the spike current via the device, the switch-on loss of the power loss is reduced, and low on-state resistor of the power device can be adopted to suppress the conduction loss. The proposed approaches are validated with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号