首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molybdenum impregnated HZSM-5 zeolite catalysts with MoO3 loading from 1 to 8 wt.% were studied in detail for the selective catalytic reduction (C2H2-SCR) of NO by acetylene. A 83.9% of NO could be removed by the reductant at 350 °C under 1600 ppm of NO, 800 ppm of C2H2 and 9.95% of O2 in He over 2%MoO3/HZSM-5 catalyst with a specific activity of in NO elimination and the competitiveness factor (c.f.) of 33.6% for the reductant. The NO elimination level and the c.f. value were ca. 3–4 times as high as those using methane or propene as reductant over the catalyst in the same reaction condition. About same reaction rate was estimated in NO oxidation as that in the NO reduction over each xMoO3/HZSM-5 (x = 0–8%) catalyst, which confirms that NO2 is a crucial intermediate for the aimed reaction over the catalysts. Appropriate amount of Mo incorporation to HZSM-5 considerably enhanced the title reaction, both by accelerating the intermediate formation and by strengthening the adsorption NOx on the catalyst surface under the reaction conditions. Rather lower adsorption tendency of acetylene compared with propene on the catalysts explains the catalyst's steady performance in the C2H2-SCR of NO and rapid deactivation in the C3H6-SCR of NO.  相似文献   

2.
Conversion of CH4, C2H6, C3H8, benzene and their binary mixtures over H-NaZSM-5 catalyst in the presence of N2O was studied. It was found that under experimental conditions methane alkylates benzene to give toluene and xylenes. Acidity of the catalyst had no effect on the reactivity of active oxygen formed from N2O towards methane and benzene, but affected their secondary transformation. Acidic samples favored the reaction of aromatic ring methylation with methane whereas deep oxidation of CH4 prevailed on NaHZSM-5. Based on the relative reactivities and 13C label distribution in the products of 13CH4+C6H6+N2O feed conversion, the scheme of hydrocarbon transformation was proposed.  相似文献   

3.
陈坦  陈皓  傅杰  陈可泉  欧阳平凯 《化工学报》2017,68(6):2344-2351
采用等体积浸渍法制备了不同负载量(1%~7%)的CuO/HZSM-5催化剂,在固定床反应器中研究了不同反应温度、溴甲烷流量以及CuO负载量对溴甲烷芳构化催化性能的影响。采用SEM、XRD、N2吸附脱附、TEM、XPS、TG、DSC、NH3-TPD等技术对反应前后的催化剂进行表征。XRD 结果显示活性组分CuO 在HZSM-5上具有很好的分散性,并且反应后Cu晶型不变。NH3-TPD 结果显示3%的CuO 负载后,催化剂强酸量增加。在CuO 负载量为3%,温度为360℃,反应空速为240 ml·g-1·h-1 条件下得到最高的芳烃收率(22.3%)。XPS 结果显示反应后在催化剂上主要的积炭为石墨碳。催化剂稳定性测试结果表明反应40 h内催化活性没有明显下降。  相似文献   

4.
Alkali halide added transition metal oxides produced ethylene selectively in oxidative coupling of methane. The role of alkali halides has been investigated for LiCl-added NiO (LiCl/NiO). In the absence of LiCl the reaction over NiO produced only carbon oxides (CO2 + CO). However, addition of LiCl drastically improved the yield of C2 compounds (C2H6 + C2H4). One of the roles of LiCl is to inhibit the catalytic activity of the host NiO for deep oxidation of CH4. The reaction catalyzed by the LiCl/NiO proceeds stepwise from CH4 to C2H4 through C2H6 (2CH4 → C2H6 → C2H4). The study on the oxidation of C2H6 over the LiCl/NiO showed that the oxidative dehydrogenation of C2H6 to C2H4 occurs very selectively, which is the main reason why partial oxidation of CH4 over LiCl/NiO gives C2H4 quite selectively. The other role of LiCl is to prevent the host oxide (NiO) from being reduced by CH4. The catalyst model under working conditions was suggested to be the NiO covered with molten LiCl. XPS studies suggested that the catalytically active species on the LiCl/NiO is a surface compound oxide which has higher valent nickel cations (Ni(2+δ)+ or Ni3+). The catalyst was deactivated at the temperatures>973 K due to vaporization of LiCl and consumption of chlorine during reaction. The kinetic and CH4---CD4 exchange studies suggested that the rate-determining step of the reaction is the abstraction of H from the vibrationally excited methane by the molecular oxygen adsorbed on the surface compound oxide.  相似文献   

5.
An effective method was proposed to determine the two organic-phase rate constants of the primary and secondary reactions which have differences in rates. The goal was achieved by employing the reaction of two mixed l-alcohols and dibromomethane in an alkaline solution of KOH/chlorobenzene two-phase medium under phase transfer catalysis. A new product of unsymmetric acetal was obtained in this work. The intermediate ROCH2Br (a-haloalkyl ether) was not detected during or after the reaction when using high reactive alcohols. This result indicated that ROCH2Br was more reactive than the organic reactant CH2Br2. This high reactive a-haloalkyl ether implied that the rate constants of secondary reactions are larger than those of the primary reactions. The resistance of mass transfer of the catalyst ((C4H9)4NBr, QBr) and the active catalyst, ((C4H9 )4NOR, QOR R: c4h9and C8h17) transferring from the aqueous phase to the organic-phase and vice versa were found to be negligible. The organic-phase reaction is a rate-determining step of the phase transfer catalytic reaction, A measured constant concentration of tetrabutylammonium alkoxide (QOR) during the reaction leads to the application of pseudo-first order rate law. The reaction rate constant of ROCh2Br acts 104 larger than that of CH2Br2.  相似文献   

6.
梁天水  王新科  刘德智  钟委 《化工学报》1951,73(10):4762-4768
氟胺类物质是最有希望作为哈龙替代品的含氮化合物之一,全氟三乙胺作为典型的氟胺类物质具有良好的灭火效果。为研究全氟三乙胺热解机理,在管式加热炉内对全氟三乙胺进行热分解,通过GC-MS分析全氟三乙胺在不同温度条件下的热解产物,并用Gaussian软件对其热解反应路径进行理论计算。结果表明:保持停留时间为10 s,全氟三乙胺的初始热解温度为600℃,750℃完全热解,热解产物有C4F9N、C3F7N、C2F6和C3F8,热解温度较低时C4F9N体积分数最大,热解温度较高时C3F7N体积分数最大。在全氟三乙胺热解反应路径计算中,全氟三乙胺分子中的C—C键断裂后存在1条反应路径,可生成实验产物中的C3F8;全氟三乙胺分子的C—N键断裂后存在3条反应路径,可生成实验产物中的C3F7N、 C4F9N和C2F6。全氟三乙胺热解后产生的CF3自由基可与H、OH自由基发生反应,从而产生灭火作用。此外,其热解产物C4F9N和C3F7N具有CN双键,更容易与燃烧活泼自由基·OH、·H发生化学作用,对研究全氟三乙胺的灭火机理具有十分重要的意义。  相似文献   

7.
梁天水  王新科  刘德智  钟委 《化工学报》2022,73(10):4762-4768
氟胺类物质是最有希望作为哈龙替代品的含氮化合物之一,全氟三乙胺作为典型的氟胺类物质具有良好的灭火效果。为研究全氟三乙胺热解机理,在管式加热炉内对全氟三乙胺进行热分解,通过GC-MS分析全氟三乙胺在不同温度条件下的热解产物,并用Gaussian软件对其热解反应路径进行理论计算。结果表明:保持停留时间为10 s,全氟三乙胺的初始热解温度为600℃,750℃完全热解,热解产物有C4F9N、C3F7N、C2F6和C3F8,热解温度较低时C4F9N体积分数最大,热解温度较高时C3F7N体积分数最大。在全氟三乙胺热解反应路径计算中,全氟三乙胺分子中的C—C键断裂后存在1条反应路径,可生成实验产物中的C3F8;全氟三乙胺分子的C—N键断裂后存在3条反应路径,可生成实验产物中的C3F7N、 C4F9N和C2F6。全氟三乙胺热解后产生的CF3自由基可与H、OH自由基发生反应,从而产生灭火作用。此外,其热解产物C4F9N和C3F7N具有CN双键,更容易与燃烧活泼自由基·OH、·H发生化学作用,对研究全氟三乙胺的灭火机理具有十分重要的意义。  相似文献   

8.
应用溶剂热法合成了不同氧化石墨烯(GO)负载量的MOF-505@GO复合材料,分别采用全自动表面积吸附仪、P-XRD、SEM和Raman对材料进行了性能表征,测定了CH4、C2H6和C3H8在MOF-505@GO上的吸附等温线,并进行Langmuir-Freundlich方程拟合,依据IAST理论模型计算了C2H6/CH4和C3H8/CH4二元混合气在MOF-505@5GO上的吸附选择性。研究结果表明,随着GO负载量增大,MOF-505@GO复合材料的孔容及BET比表面积先增大后减小,当GO负载量为5%(质量)时,复合材料MOF-505@5GO的孔容及BET比表面积达到最大,当GO负载量进一步增大至8%(质量)和10%(质量)时,复合材料的孔容及BET比表面积逐渐降低。在0.1 MPa和298 K条件下,MOF-505@5GO对CH4、C2H6和C3H8的吸附容量分别为0.88、4.81和5.17 mmol·g-1,相比MOF-505分别提高了14.9%、30.7%和13.1%。MOF-505@5GO对C2H6/CH4和C3H8/CH4的吸附选择性分别为40.1和3056.1,其对C2H6/CH4和C3H8/CH4具有极高的吸附选择性。  相似文献   

9.
Four types of new silicon-based graft blended polymers were developed and drawn to thin film composite membranes on high flux microporous polyetherimide support. The membranes and a 1 μm PDMS membrane as a standard were tested for the flux of the gases N2, O2, Ar, CH4, CO2, CH3Cl, C2H5Cl, C2H6, and n-C4H10 and the vapors methanol (MeOH), t-butyl methyl ether (MTBE), 1, 1, 1-trichloroethane (Cl3Eth), 1, 1, 2-trichlorofluoroethane (Cl3F3Eth), and n-hexane (n-C6H14). Methanol/argon mixtures were used to check the validity of the calculated selectivities. The results show higher performance for the newly developed membranes.  相似文献   

10.
The thermal dilatation in (NH3 ·CH3) SnCl6, (NH3 · C2H5) SnCl6 and [N(CH3)] SnCl6 was measured, and as the results it has turned out that (NH3 6·C2H5) SnCl6 and [N(CH3)4]2 SnCl6 undergo the first order transitions at 128 K and 158 K, respectively. The low temperature phases of (NH · C2H5) SnCl6 and [N(CH3)4]2 SnC16 are found to be monoclinic and tetragonal, respectively, No phase transition was observed in (NH3 ·CH3)2 SnCl6 down to 77 K.  相似文献   

11.
罗振敏  苏彬  王涛  程方明 《化工学报》2019,70(9):3601-3615
为研究C2H6/C3H8对甲烷爆炸极限参数及动力学特性的影响,采用标准的可燃气体爆炸极限测定装置测定了不同配比的C2H6/C3H8混合气体对甲烷爆炸极限的影响规律,同时得出了氮气惰化条件下甲烷爆炸临界参数的变化规律。此外,利用Chemkin软件模拟了C2H6/C3H8混合气体对甲烷爆炸过程中中间产物浓度的影响情况,并进行了敏感性分析。结果表明,C2H6/C3H8的存在降低了甲烷的爆炸上下限,增大了甲烷的爆炸危险度;在氮气惰化过程中甲烷的爆炸上限下降,爆炸下限上升,最终爆炸上下限重合,重合点处甲烷浓度和氮气临界浓度均随C2H6/C3H8的添加而逐渐减小;此外,C2H6/C3H8混合气体使甲烷爆炸过程中CO和·H的生成量逐渐增大,而CO2、·O和·OH的生成量则有下降趋势,通过对爆炸过程中甲烷体积的敏感性分析,发现C2H6/C3H8的存在在某种程度上促进了甲烷爆炸。对比不同配比的C2H6/C3H8混合气体,发现C3H8含量越高,其对甲烷爆炸过程中相关参数的影响越大,这可为工矿企业的安全生产提供一定的理论依据。  相似文献   

12.
考察焙烧温度对HZSM-5分子筛催化剂结构及1-丁烯齐聚性能的影响,采用XRD、SEM和NH3-TPD对催化剂进行表征。结果表明,升高焙烧温度,对HZSM-5分子筛催化剂的晶相和晶粒尺寸没有影响,催化剂中弱酸与强酸的酸强度和酸量均随焙烧温度的升高逐渐减弱。在催化剂晶粒尺寸一定条件下,催化剂酸性对催化剂的齐聚性能有较大影响,焙烧温度500℃时,C5+收率和C10+选择性最佳。  相似文献   

13.
栗童  仲兆平  张波 《化工进展》2019,38(9):4044-4051
为探究典型生物质原料纤维素与多氢原料聚乙烯共热解过程中官能团的相互作用及协同效应,本文利用傅里叶变换红外光谱仪、热裂解-气相色谱/质谱联用仪、热重-质谱及流化床对纤维素及其与聚乙烯混合共同热解实验产物进行分析。傅里叶变换红外光谱实验表明,纤维素红外谱图的主要基团为CH3、CH、CH2,多氢原料的加入均会提升碳氢基团的相对含量。热重-质谱实验表明纤维素的实验主要产物为C3H8,聚乙烯的加入会提升C2H4的离子流强度。热裂解-气相色谱/质谱联用实验表明,纤维素的热解产物以左旋葡聚糖为主,聚乙烯的加入使得纤维素中烃类的含量得到较大幅度的提升,HZSM-5的催化使得芳烃类产物的相对含量得到提升。流化床热解验证实验的总体趋势与PY-GC/MS实验一致,在纤维素与聚乙烯共热解的基础上再加入HZSM-5催化,可以得到最佳的实验效果。  相似文献   

14.
It is now well known that when Pd is supported on acidic supports, it becomes highly selective for the reduction of NO by methane in the presence of excess oxygen. It is also known that this promoting effect not only occurs with acidic zeolite supports, but also with acidic zirconia supports, such as sulfated zirconia (SZ) and tungstated zirconias (WZ). However, this promoting effect has not been investigated for the SCR with other hydrocarbons as reducing agents. In this contribution, we have investigated the behavior of a series of Pd/WZ catalysts and compared them using methane and propylene as reducing agents. The results show some important differences when the reducing agent is changed. For example, while with CH4 the addition of W to the catalyst results in an increase in both NO and hydrocarbon conversion, with C3H6 it results in a decrease in activity. At the same time, while the presence of NO accelerates the activation of CH4, it inhibits the activation of C3H6, moving its light-off to higher temperatures. Finally, an important difference between CH4 and C3H6 as reducing agents is regarding the selectivity towards N2 as opposed to N2O. Using CH4 resulted in much lower production of N2O than using C3H6, over the entire temperature range investigated.  相似文献   

15.
The use of flexible diquaternary alkylammonium ions (C2H5)3N+(CH2)nN+(C2H5)3 (Et6-diquat-n with n=3–10) as structure-directing agents for zeolite synthesis in the presence of alkali metal cation is described. Among the organic structure-directing agents studied here, a considerable diversity in the phase selectivity was observed only for the Et6-diquat-5 ion: this cation can produce five different zeolite structures (i.e., P1, SSZ-16, SUZ-4, ZSM-57, and mordenite), depending on the oxide composition of synthesis mixtures. Analysis of the variable-temperature 1H CRAMPS NMR spectra obtained from the Et6-diquat-5 molecules in these five zeolites reveals that the host–guest interactions occurring within the respective materials maintain in a manner different from one another even at 160 °C at which the zeolite hosts crystallize.  相似文献   

16.
Metal-organic frameworks (MOFs) have great potentials as adsorbents for natural gas purification. However, the trade-off between selectivity and adsorption capacity remains a challenge. Herein, we report a pillared-layer metal-organic framework Ni(HBTC)(bipy) for efficiently separating the C3H8/C2H6/CH4 mixture. The experimental results show that the adsorption capacity of C3H8 and C2H6 on Ni(HBTC)(bipy) are as high as 6.18 and 5.85 mmol·g-1, while only 0.93 mmol·g-1 for CH4 at 298 K and 100 kPa. Especially, the adsorption capacity of C3H8 at 5 kPa can reach an unprecedented 4.52 mmol·g-1 and for C2H6 it is 1.48 mmol·g-1 at 10 kPa. The ideal adsorbed solution theory predicted C3H8/CH4 selectivity is as high as 1857.0, superior to most of the reported materials. Breakthrough experiment results indicated that material could completely separate the C3H8/C2H6/CH4 mixture. Therefore, Ni(HBTC)(bipy) is a promising material for separation of natural gas.  相似文献   

17.
Steady-state activity of Pt-ZSM-5 catalysts has been investigated experimentally for the NO + C2H4 + O2 reaction under highly oxidizing conditions, typical of lean-burn gasoline engine exhaust. Effects of temperature, space velocity, feed concentration, Pt loading and water vapor on the catalytic activity have been examined using a packed-bed laboratory reactor. The catalytic activity of Pt-ZSM-5 is discussed in comparison with that of Cu-ZSM-5 and Pt/Al2O3. Results show that Pt-ZSM-5 catalysts are much more active than Cu-ZSM-5 catalysts for lean-NOx reduction at low temperatures, while the kinetic behavior of Pt/Al2O3 is very similar to that of Pt-ZSM-5. Conversion of both NO and C2H4 during the NO + C2H4 + O2 reaction over Pt-ZSM-5 around the reaction lightoff temperature is strongly inhibited by the presence of NO. The NO/C2H4 ratio in the feedstream is an important factor determining the NO reduction activity of the catalyst, and there exists an optimum value of this ratio for a maximum conversion of NO. Based on the steady-state NO conversion data, a correlation between the reactor performance and the feed concentration has been developed, and the feasibility of Pt-based catalysts for lean-NOx reduction is discussed in terms of their activity, selectivity and durability.  相似文献   

18.
The reduction of NO by hydrocarbons such as C2H4, C2H6, C3H6, and C3H8 has been investigated over mordenite-type zeolite catalysts including HM, CuHM, NZA (natural zeolite), and CuNZA prepared by an ion-exchange method in a continuous flow fixed-bed reactor. NO conversion over CuNZA catalyst reaches about 94% with 2000 ppm of C3H6 at 500°C. As reductants, alkenes seem to exhibit a higher performance for NO conversion than alkanes regardless of the catalysts. No deterioration of the catalytic activity due to carbonaceous deposits for CuNZA was observed above 400°C even after 30 h of on-stream time, but SO2 in the feed gas stream causes a severe poisoning of the CuNZA catalyst. The effect of H2O on NO conversion was significant regardless of the catalysts and the reductants employed in this study. However, CuNZA catalyst shows a unique water tolerance with C3H6. The reaction path of NO to N2 is the most important factor for high performance of this catalytic system. NO is directly reduced by a reaction intermediate, CnHm(O) formed from hydrocarbon and O2, N2O is another reaction intermediate which can be easily removed by CnHm(O).  相似文献   

19.
A kinetic model for the conversion of ethanol to hydrocarbons over HZSM-5 catalyst has been developed. The model is based on data from ethanol dehydration experiments conducted in a fixed-bed integral reactor at atmospheric pressure and temperatures of 150°C to 360°C, and is the first which integrates the major reaction pathways of both dehydration and higher hydrocarbon formation over ZSM-5 zeolite. In the model C3-C6 olefins, C3-C5 paraffins, and C6+ hydrocarbons are treated as lumped species, while ethanol, diethyl ether, ethylene, and ethane are treated individually. Nonlinear parameter estimation using quasilinearization and least squares as the objective function has been implemented to estimate rate constants, adsorption equilibrium constants, and activation energies. The Langmuir-Hinshelwood rate expressions successfully correlated the experimental data.  相似文献   

20.
The effect of the addition of a second fuel such as CO, C3H8 or H2 on the catalytic combustion of methane was investigated over ceramic monoliths coated with LaMnO3/La-γAl2O3 catalyst. Results of autothermal ignition of different binary fuel mixtures characterised by the same overall heating value show that the presence of a more reactive compound reduces the minimum pre-heating temperature necessary to burn methane. The effect is more pronounced for the addition of CO and very similar for C3H8 and H2. Order of reactivity of the different fuels established in isothermal activity measurements was: CO>H2≥C3H8>CH4. Under autothermal conditions, nearly complete methane conversion is obtained with catalyst temperatures around 800 °C mainly through heterogeneous reactions, with about 60–70 ppm of unburned CH4 when pure methane or CO/CH4 mixtures are used. For H2/CH4 and C3H8/CH4 mixtures, emissions of unburned methane are lower, probably due to the proceeding of CH4 homogeneous oxidation promoted by H and OH radicals generated by propane and hydrogen pyrolysis at such relatively high temperatures.

Finally, a steady state multiplicity is found by decreasing the pre-heating temperature from the ignited state. This occurrence can be successfully employed to pilot the catalytic ignition of methane at temperatures close to compressor discharge or easily achieved in regenerative burners.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号