首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of noble metal addition on the catalytic properties of Co/Al2O3 was evaluated for the steam reforming of methane. Co/Al2O3 catalysts were prepared with addition of different noble metals (Pt, Pd, Ru and Ir 0.3 wt.%) by a wetness impregnation method and characterized by UV–vis spectroscopy, temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) of the reduced catalysts. The UV–vis spectra of the samples indicate that, most likely, large amounts of the supported cobalt form Co species in which cobalt is in octahedral and tetrahedral symmetries. No peaks assigned to cobalt species from aluminate were found for the promoted and unpromoted cobalt catalysts. TPO analyses showed that the addition of the noble metals on the Co/Al2O3 catalyst leads to a more stable metallic state and less susceptible to the deactivation process during the reforming reaction. The Co/Al2O3 promoted with Pt showed higher stability and selectivity for H2production during the methane steam reforming.  相似文献   

2.
A series of noble metal (Pt, Ru or Pd) promoted Co/Al2O3 catalysts were prepared by sequential impregnation method. The catalysts were characterized by XRD, TPR, H2-TPD and TPSR techniques, and their catalytic performance in Fischer–Tropsch synthesis was investigated in a fixed-bed reactor. The results of activity measurements show that the addition of small amounts of noble metal greatly improved the activity of the Co/Al2O3 catalyst. TPR experimental results demonstrate that hydrogen spillover from the noble metal to cobalt oxide clusters facilitated the reduction of cobalt oxide and, thus significantly increased the reducibility of Co/Al2O3 catalyst. The presence of noble metal increased the amount of chemisorbed hydrogen and weakened the bond strength of Co–H. TPSR results indicate that CO was adsorbed in a more reactive state on the promoted catalysts.  相似文献   

3.
The effect of small amounts of Re on the reduction properties of -alumina supported cobalt catalysts has been studied by temperature-programmed reduction (TPR). An intimate mixture of Co/Al2O3 and Re/Al2O3 catalysts showed a promoting effect of Re similar to that for coimpregnated Co-Re/Al2O3. A loose mixture of Co/Al2O3 + Re/Al2O3 did not show any effect of Re on the reduction of cobalt. However, when the loose mixture of Co/Al2O3 + Re/Al2O3 was pretreated with Ar saturated with water before the TPR, a promoting effect of Re on the reduction of Co was observed. It is suggested that Re promotes the reduction of cobalt oxide by hydrogen spillover, and that no direct contact between Re and Co seems to be necessary in order to obtain the promoting effect as observed by TPR. It is also shown that the presence of a high temperature TPR peak at 1200 K assigned to cobalt aluminate is mainly a result of Co-ion diffusion during the TPR and not during calcination.  相似文献   

4.
Alumina supported cobalt catalysts were prepared by atomic layer deposition (ALD) of cobalt acetylacetonate precursors (Co(acac)2 and Co(acac)3). The main modes of interaction between the acetylacetonate precursors and the support were found to be the exchange reaction between the alumina OH-groups and the acac-ligands of the precursor and dissociative adsorption on coordinatively unsaturated Al3+ sites. The amount of precursor that could adsorb on the support was determined by steric hindrance. Samples were prepared using 1–5 reaction cycles, i.e. subsequent precursor addition (Co(acac)2) and calcination, resulting in catalysts containing ca. 3–10 wt.% Co. Samples were also prepared where the last calcination step was omitted, i.e. uncalcined catalysts. Calcination at 450 °C decreased the reducibility of the Co(acac)2/Al2O3 catalysts due to formation of a cobalt oxide phase strongly interacting with the support and aluminate type surface species. The reducibility increased with metal loading on both calcined and uncalcined catalysts; however the reducibility of the calcined catalysts remained lower than of the uncalcined ones. The dispersion was found to be lower on the calcined catalysts. The cobalt particle sizes on the calcined samples was ca. 8 nm and on the uncalcined 4–5 nm, for cobalt loadings of ca. 6–10 wt.%. Catalytic activity was tested by gas phase hydrogenation of toluene in temperature programmed mode (30–150 °C).  相似文献   

5.
The deposition of Ni, Co, Ce or Fe oxides onto the washcoat surface in the 0.5%Pd/Al2O3 catalyst enhances conversion of CH4. Catalytic activity of the Pd-catalysts containing cobalt oxide depends on the incorporated amount of cobalt oxide and the method of incorporation. The highest activities were those of the 0.5%Pd/0.3%Co/Al2O3 and 1%Pd/0.3%Co/Al2O3 catalysts (cobalt oxide deposited onto the surface of Al2O3) and the 0.5%Pd/5%Co3O4–Al2O3 catalyst (mixed washcoat). Total SSA, Pd dispersion and Pd crystallite size in the x%Pd/y%Co/Al2O3 catalysts depend on the incorporated amount of PdO and cobalt oxide. Pd dispersion in the 1%Pd/Al2O3 catalyst increases from 4% to 20% upon deposition of 14 wt.% Co3O4 (by mass Al2O3) onto the Al2O3 surface (1%Pd/0.3%Co/Al2O3). This increase in Pd dispersion influence the increase in the activity of the 1%Pd/Al2O3 catalyst. On the surface of the 0.5%Pd/5%Co3O4–Al2O3 catalyst Pd occurs mainly in the form of PdO and displays considerable mobility under conditions of temperature variations—cyclically undergoing reduction and oxidation. At 500 °C, in vacuo, the reduction was irreversible and parallelled by the agglomeration of metallic Pd crystallites. At room temperature, cobalt occurred on the catalyst surface in the form of Co+2 ions (CoAl2O4) and was reduced to Co0 at 500 °C (in vacuo). Up to 500 °C, the reduction of Co was reversible.  相似文献   

6.
Results of the characterization of six Co-based Fischer–Tropsch (FT) catalysts, with 15% Co loading and supported on SiO2 and Al2O3, are presented. Room temperature X-ray diffraction (XRD), temperature and magnetic field (H) variation of the magnetization (M), and low-temperature (5 K) electron magnetic resonance (EMR) are used for determining the electronic states (Co0, CoO, Co3O4, Co2+) of cobalt. Performance of these catalysts for FT synthesis is tested at reaction temperature of 240 °C and pressure of 20 bars. Under these conditions, 15% Co/SiO2 catalysts yield higher CO and syngas conversions with higher methane selectivity than 15% Co/Al2O3 catalysts. Conversely the Al2O3 supported catalysts gave much higher selectivity towards olefins than Co/SiO2. These results yield the correlation that the presence of Co3O4 yield higher methane selectivity whereas the presence of Co2+ species yields lower methane selectivity but higher olefin selectivity. The activities and selectivities are found to be stable for 55 h on-stream.  相似文献   

7.
Co/Al2O3 and Co/Al2O3–BaO catalysts with low cobalt loading (0.1, 0.3 and 1 wt%) for the selective catalytic reduction (SCR) of NO x by C3H6 were prepared. The distribution of cobalt species was investigated by UV–vis diffuse reflectance spectroscopy and by H2-TPR in order to identify the active cobalt species in hydrocarbons (HC)-selective catalytic reduction (SCR). It was found that the nature of cobalt species strongly depends on the cobalt loading as well as on the properties of the support. The barium addition to the alumina slows down solid state diffusion processes, improving the thermal stability of the support and preventing diffusion of cobalt into the bulk. Highly dispersed surface Co2+ species over alumina were identified as active sites in the NO-SCR process. Accordingly, a high concentration of surface Co2+ sites in Co 1 wt%/Al2O3 improves the catalytic performance in NO-SCR, the long term stability as well as the water tolerance. On the contrary, the formation of Co3O4 particles in Co 1 wt%/Al2O3–BaO promotes the propylene oxidation by oxygen, decreasing the activity and selectivity of the catalyst in NO reduction.  相似文献   

8.
The oxidized and weakly reducible perovskite oxide YBa2Cu3O7 − x (YBCO) has been prepared as a catalyst, supported on γ‐Al2O3. It was further modified by (i) impregnation with Ru and Pd and (ii) cobalt incorporation via co‐precipitation. All the catalysts were either 20% (w/w) YBCO/γ‐Al2O3 or 2% (w/w) Ru, Pd or Co/20% (w/w) YBCO/γ‐Al2O3. The catalysts were characterized using temperature programmed reduction (TPR), surface area measurements and X‐ray diffraction (XRD) studies before and after various treatments. They were studied as catalysts in the pressure range 20–50 atmospheres and in the temperature range 523–573 K in an autoclave equipped with a spinning basket catalyst container. The Pd‐, Ru‐ and Co‐modified catalysts gave predominantly methanation products, along with some C2–C4 hydrocarbons. However the YBCO/γ‐Al2O3 catalyst exhibited significant methanol selectivity at 50 atmospheres and at 523 K X‐ray diffraction studies revealed the presence of Cu(0), Cu(I) and Cu(II) after reduction and the species Cu(0) and Cu(I) are probably essential to CH3OH production. © 2000 Society of Chemical Industry  相似文献   

9.
The influence of support type and cobalt cluster size (i.e., with average diameters falling within the range of 8-40 nm) on the kinetics of Fischer-Tropsch synthesis (FT) were investigated by kinetic tests employing a CSTR and two Co/γ-Al2O3 catalysts having different average pore sizes, and two Co/SiO2 catalysts prepared on the same support but having different loadings. A kinetic model that contains a water effect constant “m” was used to fit the experimental data obtained with all four catalysts. Kinetic parameters suggest that both support type and average Co particle size impact FT behavior. Cobalt cluster size influenced kinetic parameters such as reaction order, rate constant, and the water effect parameter. In the cluster size range studied, decreasing the average Co cluster diameter by about 30% led to an increase in the intrinsic reaction rate constant k, defined on a per g of catalyst basis, by 62-102% for the γ-Al2O3 and SiO2-supported cobalt catalysts. This increase was due to the higher active Co0 surface site density as measured by hydrogen chemisorption. Moreover, less inhibition by adsorbed CO and greater H2 dissociation on catalysts having smaller Co particles was suggested by the higher a and lower b values obtained for the measured reaction orders. Interestingly, irrespective of support type, the catalysts having smaller average Co particles were more sensitive to water. Comparing the catalysts having strong interactions between cobalt and support (Co/Al2O3) to the ones with weak interactions (Co/SiO2), the water effect parameters were found to be positive (indicating a negative influence on CO conversion) and negative (denoting a positive effect on CO conversion), respectively. No clear trend was observed for b values among the different supports, but greater a and a/b values were observed for both Al2O3-supported Co catalysts, implying greater inhibition of the FT rate by strongly adsorbed CO on Co/Al2O3 relative to Co/SiO2. For both supports, the order on PCO was always found to be negative (i.e., suggesting an inhibiting effect) and positive for PH2 for all four catalysts. The order of the reaction on PH2 was close to 0.5, suggesting that dissociated H2 is likely involved in the catalytic cycle. Finally, in the limited range of average pore diameters studied (13.5 and 18.2 nm), the average pore size of the Al2O3-supported Co catalysts displayed no observable impact on the reaction rate or water effect, suggesting either that the reaction is kinetically controlled, or that the pore size difference was not significant enough to elicit a measurable response.  相似文献   

10.
A single‐step deposition of cobalt‐doped zinc oxide (Co‐ZnO) thin film nano‐composites on three different crystalline substrates, viz., Al2O3 (c‐sapphire), silicon (100) (Si), and SiO2 (quartz) is reported, using pulsed electron beam ablation (PEBA). The results indicate that the type of substrate has no effect on Co‐ZnO films stoichiometry, morphology, microstructure, and film thickness. The findings show the presence of hexagonal close‐packed metallic Co whose content increases in the films deposited on Al2O3 and Si substrates relatively to SiO2 substrate. The potential of the films as model nano‐catalysts has been evaluated in the context of the Fischer‐Tropsch (FT) process. Fuel fractions, which have been observed in FT liquid products, are rich in diesel and waxes. Specifically, Co‐ZnO/Al2O3 nano‐catalyst shows a selectivity of ~4%, 31%, and 65% towards gasoline, diesel, and waxes, respectively, while Co‐ZnO/SiO2 nano‐catalyst shows a selectivity of ~12%, 51%, and 37%, for gasoline, diesel, and waxes, respectively. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3332–3340, 2018  相似文献   

11.
The effect of sulfate species in propane dehydrogenation over Co/Al2O3 catalysts was studied. On the one hand, the interaction between SO42− and cobalt species leads to better dispersed cobalt oxide and restrains the reduction to metallic Co species, thereby inhibiting cracking reaction. On the other hand, the initial C–H bond activation and scission are facilitated on the electron-deficient cobalt and sulfate sites, resulting in dramatically improved dehydrogenation performance. XPS, MS and XRD results show that the reduction of sulfate species to SO2 and consequently the loss of active cobalt species contribute to the irreversible deactivation of catalyst.  相似文献   

12.
Three types of supported cobalt catalysts (5% as metal Co loading on SiO2, Al2O3 and TiO2) were prepared by incipient wetness impregnation with aqueous Co(NO3)2·6H2O solution. Then, all catalysts were calcined in air at 400 °C (assigned as 5Co/Si C400, 5Co/Al C400 and 5Co/Ti C400). Their catalytic activities towards the CO oxidation were studied in a continuous flow micro-reactor. Adsorption of carbon monoxide (CO) and the co-adsorption of CO/O2 over cobalt oxide were further tested under in situ FT-IR. The results showed that both 5Co/Si C400 and 5Co/Al C400 had higher activity than 5Co/Ti C400. The T50 (50% conversion) for both 5Co/Si C400 and 5Co/Al C400 was reached at temperatures as low as ambient temperature. According to the in situ FT-IR analysis, the variation in oxidation of CO was interpreted with different mechanisms, i.e., the reaction between adsorbed CO and lattice oxygen of cobalt oxide, and part of CO2 formation via carbonates on 5Co/Si C400; both types of carbonates are formed on 5Co/Al C400 to promote the CO oxidation; while both strong adsorption of CO on TiO2 and CO2 on cobalt oxide for 5Co/Ti C400 leads to affect the activity.  相似文献   

13.
Three types of supported cobalt catalysts (CoOx/SiO2, CoOx/TiO2 and CoOx/Al2O3) were prepared by incipient wetness impregnation with aqueous Co(NO3)2·6H2O solution. The phase composition and the interactions of cobalt with supports under different calcined temperatures were investigated using thermogravimetry (TG), N2-adsorption at −196 °C, X-ray diffraction (XRD), temperature-programmed reduction (TPR) and diffuse reflectance spectroscopy (DRS). Their catalytic activities towards the CO oxidation were further studied in a continuous flow micro-reactor. The results showed that the interaction of cobalt oxide with supports was much stronger in the kinds of Al2O3 and TiO2, while no conclusive evidence of any interaction was found for SiO2. Besides the crystalline Co3O4 which was formed in three supported catalysts, both high-temperature phases CoAl2O4 and CoTiO3 spinel were also detected under XRD, DRS and TPR analysis. The degree of interaction between cobalt oxide and the support not only affected the surface area and reduction behavior of the catalysts, the catalytic activity toward the CO oxidation also affected simultaneously. As the CoAl2O4 and CoTiO3 spinel formed, both the surface area and catalytic activity decreased significantly.  相似文献   

14.
Supported nickel oxide based catalysts were prepared by wetness impregnation method for the in-situ reactions of H2S desulfurization and CO2 methanation from ambient temperature up to 300 °C. Fe/Co/Ni (10:30:60)–Al2O3 and Pr/Co/Ni (5:35:60)–Al2O3 catalysts were revealed as the most potential catalysts, which yielded 2.9% and 6.1% of CH4 at reaction temperature of 300 °C, respectively. From XPS, Ni2O3 and Fe3O4 were suggested as the surface active components on the Fe/Co/Ni (10:30:60)–Al2O3 catalyst, while Ni2O3 and Co3O4 on the Pr/Co/Ni (5:35:60)–Al2O3 catalyst.  相似文献   

15.
The promotion of Fischer-Tropsch catalysts 10%Co/Al2O3, 10%Co/SiO2, 10%Co/TiO2 by 0.5% Ru and the modification of supports by 8.5 wt% ZrO2 have been studied. The following properties: catalyst specific surface area as well as reducibility and dispersion of metallic phase were studied by different techniques: BET, TPR, and H2 chemisorption. The modification of supports by non-reducible ZrO2, results in a decrease of cobalt oxide reduction on Al2O3 and TiO2 but not on SiO2 supports. Additionally the enhancement of cobalt dispersion was found for all catalysts with ZrO2 modified supports. The impact of Ru promotion is likely due to the stabilization of applied supports, prevention or blockage of interaction between surface Co species and support and an increase in cobalt oxide reducibility to the catalytically active metallic cobalt phase.  相似文献   

16.
The influence of water on alumina-supported cobalt catalysts has been studied. The deactivation of supported Co catalysts was studied in a fixed-bed reactor using synthesis gas feeds containing different concentrations of water vapour. Supporting model studies were carried out using H2O/H2 feeds in conjunction with XPS and gravimetry. Rapid deactivation occurs on Re-promoted CO/Al2O3 catalysts when H2/CO/H2O feeds are used, whereas unpromoted CO/Al2O3 shows more stable activity. The results from the gravimetric studies suggest that only a small fraction of the bulk cobalt metal initially present reoxidizes to cobalt oxide during reaction. However, the XPS results indicate significant reoxidation of surface cobalt atoms or highly dispersed cobalt phases, which is likely to be the cause of the observed deactivation. Rhenium is shown to have a marked effect on the extent of reoxidation of alumina-supported cobalt catalysts.  相似文献   

17.
Carbon nanotubes (CNTs) and the ones grown on MgO and alumina are used as supports for cobalt catalyst in Fischer–Tropsch (FT) synthesis. Carbon nanotubes were synthesized by chemical vapor deposition of methane on 5.0 wt.% iron on MgO or alumina at 950 °C. The carbon nanotubes were characterized by SEM and TEM microscopy and Raman spectroscopy. Cobalt nitrate was impregnated onto the supports by impregnation, and the samples were dried and reduced in-situ at 400 °C for 12 h, and then FT synthesis was carried out in a fixed-bed reactor. The catalysts were characterized by BET surface area measurement, TPR and TPD. The effect of carbon nanotubes as cobalt support on CO conversion, product selectivity, and olefin to paraffin ratio of FT synthesis was investigated and compared with activated carbon as well as Al2O3, as a traditional support. The results revealed that the activity of the Co/CNT catalyst was improved by 22%, compared to the conventional Co/alumina catalysts. Also the cobalt supported on CNTs grown on MgO (Co/CNT–MgO) shows the highest selectivity to C5+ as the most desired FTS products. The C5+ selectivity enhancement was about 37, 34, 17, and 77% as compared to the Co/CNT, Co/alumina, Co/CNTs-alumina, and Co/activated carbon, respectively. Also the olefin/paraffin ratio on the Co/CNTs-MgO catalyst is about 7.7 times higher than the conventional cobalt catalysts. It seems that the degree of reduction of cobalt is higher when supported on CNTs than on alumina. This leads to higher FTS activity. Also, the particle size distribution of the cobalt is affected by the CNT–MgO support leading to higher C5+ selectivity.  相似文献   

18.
The effect of the promotion of Co/SiO2 catalysts with cerium oxide on their physicochemical characteristics and activity in the synthesis of hydrocarbons from CO and H2 was studied. According to X-ray diffraction data, the average size of Co3O4 crystallites weakly depends on the introduced amount of the promoter. The results of temperature-programmed reduction and oxygen titration showed that the degree of cobalt reduction in the hydrogen-activated catalysts increased with the concentration of the CeO2 promoter. The activity of the promoted samples increased proportionally to the content of cerium, and selectivity for the target higher hydrocarbons reached a maximum in the Co–20Ce/SiO2 sample.  相似文献   

19.
In order to reveal the optimum Co loading, the selective catalytic reduction of NO with C3H6 over Co/Al2O3 catalyst was studied in a systematic fashion by varying the amount of cobalt oxide. It was found that upon loading a small amount of cobalt oxide (namely 0.5 wt% on a Co metal basis), the combination between Co(II) acetate salt and a high-purity alumina provided an active catalyst in the presence of excess oxygen and water. TPR measurement showed the presence of Co species other than CoAl2O4 spinel in the most excellent performance catalyst, from which the active sites should be produced.  相似文献   

20.
Synthesis of liquid biofuels from synthesis gas is considered. A series of Co, Co/Ru and Fe catalysts supported by three Al2O3 based supports were prepared and tested for the Fischer–Tropsch (FT) reaction. The effects of supports and precursor salts on the activity of the catalysts were studied in the hydrogenation of CO using H2/CO in a ratio of 2:1. The most active catalysts were tested with gas mixture having a composition close to synthesis gas derived by gasification of biomass. The combination of precursor salt and support is significant in order to get an active catalyst. Cobalt-based catalysts with traces of ruthenium on a small particle support proved to be the most active in the production of hydrocarbons with FT reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号