首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The semiquantitative estimations of 980°C exothermic reaction products of kaolinite by quantitative X-ray diffraction (QXRD) and chemical leaching techniques show the formation of a significant amount of amorphous aluminosilicate phase (∼ 30 to 40 wt%). The theoretically expected AlO4/AlO6 ratio in the 980°C reaction is in close agreement with the value measured by the X-ray fluorescence (XRF) technique and the experimental radial electron distribution (RED) profile agrees with the suggested 980°C formation of Si-Al spinel with mullite-like composition. Mullitization of kaolinite has been compared with a synthetic Al2O3—SiO2 mixture. In synthetic mixtures development of an intermediate amorphous aluminosilicate phase is an essential step prior to mullitization. Kaolinite forms mullite in two ways: (i) by polymorphic transformation of cubic mullite at 1150° to 1250°C and (ii) by nucleation of mullite in the amorphous aluminosilicate phase and its subsequent growth above 1250°C. Thus chemical continuity is maintained throughout the reaction series and the intermediate spinel phase is silicon bearing and its subsequent transformation to mullite confirms the topotactic concept in the kaolinite transformation.  相似文献   

2.
Earlier works of mullitization through the gel route have been reviewed and the results show 980°C DTA and crystalline phases. Some Al2O3-SiO2 gels have been synthesized by using different precursors and by varying pH and water content during the gelification process. Thermal changes of these coherent gels were studied by DTA and X-ray powder diffractometry. The results demonstrate that two types of aluminosilicate gels form. The first type produces orthorhombic mullite directly on heating at 980°C, whereas the second type forms cubic mullite first at 980°C and then transforms to the orthorhombic variety on further heating. Lastly, the cause of the 980°C exotherm is explained with reference to kaolinite.  相似文献   

3.
Formation of Silicon-Aluminum Spinel   总被引:1,自引:0,他引:1  
Characterization of the intermediate cubic phase formed during the transformation of coprecipitated SiO2-Al2O3 gel on heating was studied and X-ray diffraction methods are reviewed and criticized. Coprecipitated gels of different SiO2/Al2O3 ratios were prepared; all showed a 980°C exotherm followed by crystallization of the cubic phase and liberation of SiO2. Alkali extraction of SiO2 showed two types present in the 980°-heated product. One variety is free amorphous SiO2 and the other, chemically bonded to alumina in the crystalline cubic phase, was isolated and characterized as Si-Al spinel with the same composition as mullite. Thus, its formation from the gel of mullite composition shows the highest exotherm and the measured density agrees approximately with the theoretically calculated value.  相似文献   

4.
The environment of the Al atom in alumina gels, single-phase and diphasic mullite gels, and their transformation products was studied by 27Al magic-angle spinning nuclear magnetic resonance (MASNMR). Alumina gels made from inorganic and organic precursors showed exactly the same 27Al MASNMR spectra. Heat treatment of gels at 500°C caused artial conversion of octahedral Al to tetrahedral Al. The Al in single-phase mullite gel appears to be highly ordered compared to that in diphasic mullite gel.  相似文献   

5.
NMR study of mullite precursors has shown that local arrangement of Al in samples synthesized by spray pyrolysis differs considerably from the one adopted by samples obtained by polymeric or colloidal routes. Aluminum is tetra- and pentahedrally coordinated in the first type of samples but is tetra- and octahedrally coordinated in the second ones. Segregation of SiO2 and Al2O3 is directly produced in colloidal preparation; however, this phenomenon occurs only in polymeric gels when they are heated between 980° and 1100°C. In polymeric samples, thermal treatment at ∼980°C produces the formation of γ-Al2O3. A similar treatment in spray-pyrolized powders gives directly 3:2 mullite. From these results, exothermic and expansive effects detected at ∼980°C were ascribed to changes in coordination of Al produced during the atomic rearrangement that accompanies formation of these two phases (γ-Al2O3 or mullite). Above 1200°C, incorporation of Si in the Al-rich phase induces the formation of 3:2 mullite in polymeric and colloidal samples.  相似文献   

6.
The recent findings for the kaolinite metakaolinite, cubic-mullite, and orthorhombic-mullite reaction series have been thoroughly examined by differential thermomechanical analysis (DTMA) and differential thermal analysis (DTA). Metakaolinite shows two differential contraction peaks in the vicinity of 980°C caused by final dehydroxylation at the endothermic dip just before 980°C in DTA with expulsion of 35–37 wt% SiO2, formation of a defect aluminosilicate phase and simultaneous contraction of the latter phase, and crystallization of cubic mullite at the 980°C exotherm in DTA. Mullitization takes place in two simultaneous reaction steps: (i) polymorphic transformation of cubic mullite to orthorhombic mullite during the ∼1250°C exotherm shown by DTA which coincides with the differential expansion peak in DTMA and (ii) nucleation followed by crystallization of orthorhombic mullite from the residual aluminosilicate compact phase during the ∼1330°C exotherm shown by DTA. The aluminosilicate formed during the large differential contraction at 1100°–1400°C as shown by DTMA. These results, obtained by the two physical techniques, corroborate earlier findings of the kaolinite transformation series.  相似文献   

7.
Submicrometer SiO2-Al2O3 powders with compositions of 46.5 to 76.6 wt% Al2O3 were prepared by hydrolysis of mixed alkoxides. Phase change, mullite composition, and particle size of powders with heating were analyzed by DTA, XRD, IR, BET, and TEM. As-produced amorphous powders partially transformed to mullite and Al-Si spinel at around 980°C. The compositions of mullite produced at 1400° and 1550°C were richer in Al2O3 than the compositions of stable mullite solid solutions predicted from the phase diagram of the SiO2-Al2O3 system. Particle size decreased with increasing Al2O3 content. The sintered densities depended upon the amount of SiO2-rich glassy phase formed during sintering and the green density expressed as a function of particle size.  相似文献   

8.
Stoichiometric mullite (71.38 wt% Al2O3-28.17 wt% SiO2) and 80 wt% Al2O3-20 wt% SiO2 gels were prepared by the single-phase and/or diphasic routes. Dense sintered bodies were prepared from both sets of gels in the Al2O3-SiO2 system. Apparent densities of 96% and 97% of theoretical density were measured for the diphasic (using two sols) mullite samples sintered at 1200° and 1300°C for 100 min, respectively; this compared with 85% and 94% for the single-phase xerogels under the same conditions, and to much lower values for mullite prepared from conventional mixed powders. The microstructure of the mullite pellets from diphasic xerogel precursors is also considerably finer.  相似文献   

9.
Mechanical mixture of γ-Al2O3 and amorphous SiO2, and diphasic Al2O3/SiO2 gels of three different compositions were synthesized. They were subjected to heat treatment to various temperatures in the range 900°–1600°C. Qualitative X-ray diffraction data show that these diphasic gels do not crystallize to a combined mixture of θ-Al2O3 and α-Al2O3 polymorphs at the intermediate stage, prior to mullite formation. Estimated mullite formation data show that the course of its formation from mixed oxides was different from that of diphasic gels. Results are compared with previous findings and the concept of Al–Si spinel formation in the phase transformation of stoichiometric diphasic gel system is substantiated.  相似文献   

10.
A simple aqueous process is described for the preparation of aluminosilicate colloids and chemically homogeneous mullite precursor gel. Starting from a solution of aluminum nitrate and silicic acid, aluminum is slowly hydrolyzed at 80–100°C by in situ generation of ammonia. A silica gel is rapidly made, probably by a catalytic effect of urea, the base generator. This gel is then slowly digested by partially hydrolyzed aluminum species which break the Si-O-Si bonds and link to the gel by Si-O-Al bonds. Progressively a clear colloidal sol is obtained and the colloidal particle size continues to decrease toward aluminosilicate species where the silicon atoms are in a single environment and may be linked to three hexacoordinated aluminum atoms and a hydroxyl group, by reference to natural imogolite. When the hydrolysis of aluminum is nearly complete, these particles are cross-linked and a final gel precursor of mullite is obtained. This gel is chemically very homogeneous and crystallizes to mullite at 980°C. The structural evolution, from the first gel to the ceramic, has been followed by 27Al and 29Si liquid- and solid-state MAS NMR spectroscopy.  相似文献   

11.
Reexamination of the Kaolinite-to-Mullite Reaction Series   总被引:4,自引:0,他引:4  
The kaolinite-to-mullite reaction series was reexamined with special attention to the nature of the metaphase, the eontroversial spinel phase, and the cause of the exothermic peak at 980°C. Amorphous SiO2 forms during the exothermic reaction; it can be leached by alkali extraction. When the residual cubic phase is heated further, it forms mullite only. This result indicates that the cubic phase is an Al-Si spinel and that metakaolinite is an AI2O3-SiO2 compound. It was established that the exotherm exhibited by kaolinite at 980°C represents the sudden transformation of metakaolinite to Al-Si spinel, the crystallization of mullite, and the liberation of amorphous SiO2. The AI-Si spinel has the same composition as mullite, containing both AI(IV) and AI(VI). This spinel transforms into mullite at the second exothermic peak; no amorphous SiO2 is liberated.  相似文献   

12.
The thermal evolution of a mullite gel of composition 2Al2O3·SiO2 has been investigated. The gel crystallized at 1300°C into an alumina-rich mullite and corundum, instead of single-phase 2Al2O3·SiO2 mullite. The amount of Al2O3 that dissolved in the mullite structure has been determined in the 1300–1780°C temperature range by measuring the mullite lattice parameters. A maximum limit for the amount of Al2O3 in solid solution has been observed. Densification of the gel powders has been analyzed up to temperatures of 1780°C. The microstructure of dense materials always showed the presence of residual Al2O3 particles.  相似文献   

13.
Four samples of kaolinite were investigated to determine the exothermic reaction enthalpy by differential thermal calorimetry. The measured 9 kcal/mol for the 980°C exothermic reaction enthalpy corresponds to the calculated heat of crystallization of silica at this temperature. Literature evidence discounts the crystallization of the other participating phases, mullite and silicon spinel. An NaOH extraction technique was used to remove the amorphous silica from a kaolinite fired at 850°C; this extraction removed the 980°C exotherm. It is tentatively suggested, therefore, that most of the heat release at 980°C on firing kaolinite accompanies the reaction SiO2(amorphous) → SiO2(β-quartz).  相似文献   

14.
Control over the structure of hybrid (colloidal + molecular) aluminosilicate gels was utilized to demonstrate that precursor chemistry has a direct and controllable effect on the ∼1000°C crystallization of spinel and mullite in molecular precursor systems. Synthesis or preparation conditions leading to the development of a cubic, transition alumina result in the epitactic nucleation of spinel at ∼1000°C in gels that otherwise crystallize directly to mullite at ∼1000°C. Thus, the preference for spinel nucleation in gels derived from solution precursor systems whose chemistries promote formation of transition alumina readily explains the reported inability to obtain substantial mullite yields at ∼1000°C. Isothermal transformation kinetics of colloidal and hybrid gels show that in the absence of direct mullite formation at ∼1000°C, the release of alumina from the spinel-type crystal structure becomes the rate-controlling step in the transformation. This necessitates higher temperatures for mullite formation and limits the kinetic enhancement possible with extrinsic increases in mullite nucleation frequency.  相似文献   

15.
Nonhollow spherical particles were prepared by hydrolysis of liquid aerosols consisting of mixtures of silicon methoxide and aluminum sec-butoxide. In order to obtain particles with mullite composition, some chloroform had to be added to the alkoxides mixture. TEM microanalyses carried out in single particles revealed a rather narrow distribution in composition around the mullite nominal value. The particles, as prepared, were amorphous. Their thermal evolution was studied by thermal analyses, X-ray diffraction, and infrared and 27A1, 29Si NMR spectroscopies. Crystallization of pseudo-tetragonal mullite was detected at 950°C, suggesting a high degree of Al-Si mixing in the original particles. At the same time, some silica segregation was also observed. Between 1200°-1400°C, the pseudo-tetragonal/ orthorhombic mullite transformation took place, accompanied by the incorporation of segregated silica into the originally formed mullite.  相似文献   

16.
A simple, processable precursor to mullite can be synthesized in quantities of 100 g in a few hours by direct reaction of silica, aluminum hydroxide, and triethanolamine in ethylene glycol. To delineate a processing window whereby precursor shapes can be transformed into mullite, the chemical and phase microstructural evolution of this precursor on pyrolysis to selected temperatures in air is followed by thermal gravimetric analysis, differential thermal analysis, diffuse reflectance infrared Fourier transform spectroscopy, solid-state 27Al and 29Si nuclear magnetic resonance, X-ray diffractometry, and Brunauer-Emmett-Teller analytical methods. The precursor behaves as a single-phase, atomically mixed material that initially transforms to a porous, amorphous aluminosilicate when heated to temperatures as high as 950°C. Above 950°C, the precursor first transforms to tetragonal mullite, based on comparison with the literature, and, on continued heating above 1200°C, to orthorhombic mullite with coincident loss of porosity.  相似文献   

17.
Examination of mixtures of extremely pure silica and alumina shows that the greatest reactivity is not encountered with stoichiometric ratios to form mullite with the formula 3Al2O3. 2SiO2 but rather with the formula 2A12O3-SiO2, and that reactivity also depends on the crystalline modification of alumina. A sharp exothermic differential thermal peak at 980°C. is attributed to three simultaneous reactions dependent on the silica-alumina ratio of the mixture: (1) the crystallization of gamma alumina, (2) the crystallization of a hydrogen aluminum spinel (HAl5O5), and (3) the reaction of silica with the hydrogen aluminum spinel to form mullite.  相似文献   

18.
Hybrid Gels for Homoepitactic Nucleation of Mullite   总被引:2,自引:0,他引:2  
Hybrid gels, defined as gels from mixtures of polymerically and colloidally derived sols, offer many opportunities for crystalline microstructure development upon heating. In this study, hybrid mullite gels are formed by mixing a colloidal boehmite—silica sol with a polymeric aluminum nitrate—tetraethoxysilane-derived sol. The polymeric gel crystallizes in situ to form mullite that acts as seed crystals for homoepitactic nucleation during the subsequent transformation of the colloidal component of the hybrid gel. Compared with the entirely colloidal gel, the introduction of a 30 wt% polymeric gel fraction results in an increase in apparent nucleation frequency from ∼5x1011 to ∼1x1014 nuclei / cm3 at 1375°C, a reduction in high-temperature grain size from 1.4 to 0.4 μm at 1550°C, and an increase in the degree of microstructural homogeneity, as evidenced by intragranular pore removal.  相似文献   

19.
Effects of the concentration of ZrOCl2, calcination temperature, heating rate, and the size of secondary particles after hydrolysis on the preparation of high-purity ZrSiO4 fine powders from ZrOCl2.8H 2 O (0.2 M to 1.7 M ) and equimolar colloidal SiO2 using sol–gel processing have been studied. Mechanical properties of the sintered ZrSiO4 from the high-purity ZrSiO4 powders have been also investigated. Single-phase ZrSiO4 fine powders were synthesized at 1300°C by forming ZrSiO4 precursors having a Zr–O–Si bond, which was found in all the hydrolysis solutions, and by controlling a secondary particle size after hydrolysis. The conversion rate of ZrSiO4 precursor gels to ZrSiO4 powders from concentrations other than 0.4 M ZrOCl2.8H2O increased when the heating rate was high, whereupon the crystallization of unreacted ZrO2 and SiO2 was depressed and the propagation and increase of ZrSiO4 nuclei in the gels were accelerated. The density of the ZrSiO4 sintered bodies, manufactured by firing the ZrSiO4 compacts at 1600° to 1700°C, was more than 95% of the theoretical density, and the grain size ranged around 2 to 4 μm. The mechanical strength was 320 MPa (room temperature to 1400°C), and the thermal shock resistance was superior to that of mullite and alumina, with fairly high stability at higher temperatures.  相似文献   

20.
Mullite/SiAlON/Alumina Composites by Infiltration Processing   总被引:2,自引:0,他引:2  
The formation of mullite/SiAlON/alumina composites was studied by infiltrating a SiAlON/alumina-base composite with two different solutions, followed by thermal treatment. The base composite was prepared from a mixture of tabular Al2O3 grains, fume SiO2, and aluminum powders. The mixture was pressed into test bars and nitrided in a nitrogen-gas (N2) atmosphere at 1480°C. The infiltrants were prehydrolyzed ethyl polysilicate solution and ethyl polysilicatealuminum nitrate solution. The composites were infiltrated under vacuum, cured at 100°C, and precalcined in air at 700°C. This infiltration process was repeated several times to produce bars that had been subjected to multiple infiltrations, then the bars were calcined in a N2 atmosphere at 1480°C to obtain mullite/SiAlON/alumina composites. The infiltration process increased the percentage of nitrogenous crystalline and mullite phases in the matrix; therefore, a decrease of the composite microporosity was observed. The infiltration increased the mechanical strength of the composites. Of the two composites, the one produced using prehydrolyzed ethyl polysilicate as the infiltrant had a higher mechanical strength, before and after being subjected to a severe thermal shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号