首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper presents the experimental heat transfer coefficients and pressure drop measured during refrigerant R134a vaporisation inside a small brazed plate heat exchanger (BPHE): the effects of heat flux, refrigerant mass flux, saturation temperature and outlet conditions are investigated. The BPHE tested consists of 10 plates, 72 mm in width and 310 mm in length, which present a macro-scale herringbone corrugation with an inclination angle of 65° and corrugation amplitude of 2 mm.The experimental results are reported in terms of refrigerant side heat transfer coefficients and frictional pressure drop. The heat transfer coefficients show great sensitivity both to heat flux and outlet conditions and weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow.The experimental heat transfer coefficients are also compared with two well-known correlations for nucleate pool boiling and a correlation for frictional pressure drop is proposed.  相似文献   

2.
对R22、R407c、R134a三种制冷剂的基本物性及热力性能进行了分析比较,并在风冷螺杆热泵机组基础上进行了替换试验研究。结果表明:R407c为最佳替换R22的制冷剂;R134a替换后能效比较高,但制冷(热)量衰减过多,同时R134a的运行压力过低不太适合热泵工况。  相似文献   

3.
This paper presents a comparative study of the condensation heat transfer coefficients in a smooth tube when operating with pure refrigerant R134a and its mixture with lubricant Castrol “icematic sw”. The lubricant is synthetic polyol ester based oil commonly used in lubricating the compressors. Two concentrations of R134a-oil mixtures of 2% and 5% oil (by mass) were analysed for a range of saturation temperatures of refrigerant R134a between 35 °C and 45 °C. The mass flow rate of the refrigerant and the mixtures was carefully maintained at 1 g/s, with a vapour quality varying between 1.0 and 0. The effects of vapour quality, flow rate, saturation temperature and temperature difference between saturation and tube wall on the heat transfer coefficient are investigated by analysing the experimental data. The experimental results were then compared with predictions from earlier models [Int J Heat Mass Transfer (1979), 185; 6th Int Heat Transfer Congress 3 (1974) 309; Int J Refrig 18 (1995) 524; Trans ASME 120 (1998) 193]. Finally two new empirical models were developed to predict the two-phase condensation heat transfer coefficient for pure refrigerant R134a and a mixture of refrigerant R134a with Castrol “icematic sw”.  相似文献   

4.
Flow boiling heat transfer coefficients of R22, R134a, R507, R404A and R410A inside a smooth horizontal tube (6 mm I.D., 6 m length) were measured at a refrigerant mass flux of about 360 kg/m2 s varying the evaporating pressure within the range 3–12 bar, with heat fluxes within the range 11–21 kW/m2. The experimental data are discussed in terms of the heat transfer coefficients as a function of the vapour quality. The experimental results clearly show that the heat transfer coefficients of R134a are always higher than those pertaining to R22 (from a minimum of +6 to a maximum of +45%).  相似文献   

5.
设计了一个可控制制冷剂流量、压力和温度等实验工况的微通道换热器相变流动与换热的可视化实验平台,对R134a制冷剂流经微通道换热器进行了冷凝换热实验研究.试验测量了小质量流率下的R134a制冷剂在多个饱和状态工况下的冷凝换热性能,涉及质量流量、进出口压力和温度等参数.实验分析了传热系数与雷诺数的关系,与Koyama的关联式预测比较接近.分析了摩擦系数随雷诺数的变化,与H L MO和Wu&Little方程计算得到的数值相近.  相似文献   

6.
This paper presents the experimental tests on HFC-134a condensation inside a small brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature and vapour super-heating are investigated.A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 20 kg/m2 s. For refrigerant mass flux lower than 20 kg/m2 s, the saturated vapour heat transfer coefficients are not dependent on mass flux and are well predicted by the Nusselt [Nusselt, W., 1916. Die oberflachenkondensation des wasserdampfes. Z. Ver. Dt. Ing. 60, 541–546, 569–575] analysis for vertical surface. For refrigerant mass flux higher than 20 kg/m2 s, the saturated vapour heat transfer coefficients depend on mass flux and are well predicted by the Akers et al. [Akers, W.W., Deans, H.A., Crosser, O.K., 1959. Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55, 171–176] equation. In the forced convection condensation region, the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by the Webb [Webb, R.L., 1998. Convective condensation of superheated vapour. ASME J. Heat Transfer 120, 418–421] model. The heat transfer coefficients show weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on the refrigerant mass flux.  相似文献   

7.
Modelling of reciprocating and scroll compressors   总被引:1,自引:0,他引:1  
This paper presents simple and thermodynamically realistic models of two types of compressors widely used in domestic heat pumps (reciprocating and scroll compressors). These models calculate the mass flow rate of refrigerant and the power consumption from the knowledge of operating conditions and parameters. Some of these parameters may be found in the technical datasheets of compressors whereas others are determined in such a way that the calculated mass flow rate and electrical power match those given in these datasheets.The two models have been tested on five reciprocating compressors and five scroll compressors. This study has been limited to compressors with a maximum electrical power of 10 kW and for the following operating conditions: evaporating temperatures ranging from −20 to 15 °C and condensing temperatures ranging from 15 to 60 °C.The average discrepancies on mass flow rate and power for reciprocating compressors are 1.10 and 1.69% (for different refrigerants: R134a, R404A, R22, R12 and R407C). For scroll compressors, the average discrepancies on mass flow rate and power are 2.42 and 1.04% (for different refrigerants: R134a, R404A, R407C and R22).  相似文献   

8.
HFC134a/HC600a/HC290 mixture a retrofit for CFC12 systems   总被引:1,自引:0,他引:1  
The environmental concerns with the impact of refrigerant emissions lead to the importance in identifying a long-term alternative to meet all requirements in respect of system performance and service. Even though HFC134a and HC blend (containing 55.2% HC600a and 44.8% HC290 by weight) have been reported to be substitutes for CFC12, they have their own drawbacks in respect of energy efficiency/flammability/serviceability aspects of the system. In this present work, experimental investigation has been carried out on the performance of an ozone friendly refrigerant mixture (containing HFC134a/HC blend) in two low temperature systems (a 165 l domestic refrigerator and a 400 l deep freezer) and two medium temperature systems [a 165 l vending machine (visi cooler) and a 3.5 kW walk-in cooler]. The oil miscibility of the new mixture with mineral oil was also studied and found to be good. The HFC134a/HC blend mixture that contains 9% HC blend (by weight) has better performance resulting in 10–30% and 5–15% less energy consumption (than CFC12) in medium and low temperature system, respectively.  相似文献   

9.
单元式风冷冷风空调机组普遍采用波纹翅片管冷凝器。对冷凝器进行设计的关键是确定制冷工质在铜管内的冷凝换热系数及空气在翅片侧的表面换热系数,同时也需要考虑空气流过冷凝器的压降,以便选择风机。采用数学模型及换热关联式计算相关参数,在此基础上对R134a单元式风冷冷风空调机组的冷凝器进行设计。  相似文献   

10.
In a refrigerant compressor, improvement in performance such as reduction of various electrical and mechanical losses, reduction of gas leakage, better lubrication, reduction of suction gas heating etc. can be achieved by maintaining a low temperature rise inside the compressor. Proper selection and location of an internal over load protector relay, estimation of heat transfer coefficient and winding insulation coefficient are also vital in enhancing the performance. In this context it is necessary to understand the temperature distribution inside a compressor for an optimal design. In this paper, a numerical model has been created and a heat transfer analysis for a hermetically sealed reciprocating refrigerant compressor is presented. The temperature distribution inside the compressor has been obtained taking into consideration the various heat sources and sinks and compared with experimental results. The maximum temperature was observed at the rotor which was 427.5 K. The deviation of the predicted rotor temperature from that of experimental value is 5.5% only. A good agreement was found between experimental results and that predicted in the numerical analysis.  相似文献   

11.
Flow condensation heat transfer coefficients (HTCs) of R12, R22, R32, R123, R125, R134a, and R142b were measured experimentally on a horizontal plain tube. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water-glycol loop. The test section in the refrigerant loop was made of a copper tube with an outside diameter of 9.52 mm and 1 m length. The refrigerant was cooled by cold water passing through an annulus surrounding the test section. All tests were performed at a fixed refrigerant saturation temperature of 40 °C with mass fluxes of 100, 200, 300 kg m−2 s−1 and heat flux of 7.3–7.7 kW m−2. Experimental results showed that flow condensation HTCs increase as the quality and mass flux increase. At the same mass flux, the HTCs of R142b and R32 are higher than those of R22 by 8–34% while HTCs of R134a and R123 are similar to those of R22. On the other hand, HTCs of R12 and R125 are lower than those of R22 by 24–30%. Previous correlations predicted the present data satisfactorily with mean deviations of less than 20% substantiating indirectly the reliability of the present data. Finally, a new correlation was developed by modifying Dobson and Chato's correlation with an introduction of a heat and mass flux ratio combined with latent heat of condensation. The correlation showed a mean deviation of 10.7% for all pure halogenated refrigerants' data obtained in this study.  相似文献   

12.
This paper investigates the effect that the bulk lubricant concentration has on the non-adiabatic lubricant excess surface density on a roughened, horizontal flat pool-boiling surface. Both pool boiling heat transfer data and lubricant excess surface density data are given for pure R134a and three different mixtures of R134a and a polyolester lubricant (POE). A spectrofluorometer was used to measure the lubricant excess density that was established by the boiling of an R134a/POE lubricant mixture on a test surface. The lubricant is preferentially drawn out of the bulk refrigerant/lubricant mixture by the boiling process and accumulates on the surface in excess of the bulk concentration. The excess lubricant resides in an approximately 40 μm layer on the surface and influences the boiling performance. The lubricant excess surface density measurements were used to modify an existing dimensionless excess surface density parameter so that it is valid for different reduced pressures. The dimensionless parameter is a key component for a refrigerant/lubricant pool-boiling model given in the literature. In support of improving the boiling model, both the excess measurements and heat transfer data are provided for pure R134a and three R134a/lubricant mixtures at 277.6 K. The heat transfer data show that the lubricant excess layer causes an average enhancement of the heat flux of approximately 24% for the 0.5% lubricant mass fraction mixture relative to pure R134a heat fluxes between 5 and 20 kW/m2. Conversely, both 1 and 2% lubricant mass fraction mixtures experienced an average degradation of approximately 60% in the heat flux relative to pure R134a heat fluxes between approximately 4 and 20 kW/m2. This study is an effort toward generating data to support a boiling model to predict whether lubricants degrade or improve boiling performance.  相似文献   

13.
The purpose of this paper is to identify the minimum desorption temperatures required to operate thermally driven adsorption beds of a solid sorption refrigeration system. The method is based on the evaluation of uptake efficiency of the adsorption bed and estimating there from conditions under which the compressor ceases to provide any throughput. The difference in the densities of the refrigerant between the inlet and outlet, the adsorption characteristics of the adsorbate–refrigerant pair and the void volume in the thermal compressor are the contributors to the manifestation of the desorption state. Among them, the void volume is a controllable parameter whose role is analogous to the clearance volume in a positive displacement compressor. The methodology has been tested out with three systems, namely, silica gel + water, activated carbon fiber + ethanol and activated carbon + HFC 134a systems. It is shown that waste heat at as low as 60 °C can operate these systems which make them good energy conservation devices through recovery of low grade process waste heat.  相似文献   

14.
A diffusion absorption refrigeration (DAR) cycle is driven by heat and utilizes a binary solution of refrigerant and absorbent as working fluid, together with an auxiliary inert gas. Commercial DAR systems operate with ammonia–water solution and hydrogen or helium as the inert gas. In this work, the performance of a simplified DAR system working with an organic absorbent (DMAC – dimethylacetamide) and five different refrigerants and helium as inert gas was examined numerically, with the aim of lowering the generator temperature and system pressure along with a non-toxic refrigerant The refrigerants were: chlorodifluoromethane (R22), difluoromethane (R32), 2-chloro-1,1,1,2-tetrafluoroethane (R124), pentafluoroethane (R125) and 1,1,1,2-tetrafluoroethane (R134a). The results were compared with the performance of the same system working with ammonia–water and helium. Similar behavior was found for all systems, regarding the coefficient of performance (COP) and rich and poor solution concentrations as functions of generator temperature. It was found that typical generator temperature with the new substances was 150 °C, yet lower COPs, higher evaporator temperatures and lower condensation temperature of about 40 °C governed these systems.  相似文献   

15.
This paper investigates the effect that an additive had on the boiling performance of an R134a/polyolester lubricant (POE) mixture and an R123/naphthenic mineral oil mixture on a roughened, horizontal flat surface. Both pool boiling heat transfer data and lubricant excess surface density data are given for the R134a/POE (98% mass fraction/2% mass fraction) mixture before and after use of the additive. A spectrofluorometer was used to measure the lubricant excess density that was established by the boiling of the R134a/POE lubricant mixture before and after use of the additive. The measurements obtained from the spectrofluorometer suggest that the additive increases the total mass of lubricant on the boiling surface. The heat transfer data show that the additive caused an average and a maximum enhancement of the R134a/POE heat flux between 5 kW m−2 and 22 kW m−2 of approximately 73% and 95%, respectively. Conversely, for nearly the same heat flux range, the additive caused essentially no change in the pool boiling heat flux of an R123/mineral oil mixture. The lubricant excess surface density and interfacial surface tension measurements of this study were used to form the basis of a hypothesis for predicting when additives will enhance or degrade refrigerant/lubricant pool boiling.  相似文献   

16.
The capillary tube is often served as an expansion device in small refrigeration and air-conditioning systems. In this paper, a generalized correlation for predicting the refrigerant mass flow rate through the adiabatic capillary tube is developed with approximate analytic solutions based on the extensive data for R12, R22, R134a, R290, R600a, R410A, R407C, and R404A, in which a homogeneous equilibrium model for two-phase flow is employed, and there is a subcooled liquid or saturated two-phase mixture at the inlet of the capillary tubes. The collected database about capillary tubes covers the inner diameter from 0.5 mm to 2 mm, the tube length from 0.5 m to 5 m, the condensing temperature from 20 °C to 60 °C, the subcooling from 0 °C to 20 °C, and the quality from 0 to 0.3 at the inlet. Assessments for the correlation are made with some experimental data for R12, R22, R134a, R290, R407C, R410A, and R404A obtained from the open literature and some existing correlations based on the experimental database also. The present correlation yields an average deviation of −0.83% and a standard deviation of 9.02% from the database.  相似文献   

17.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

18.
The thermal behaviour of a new two-phase secondary refrigerant has been analysed. The “stabilised ice slurry” is a suspension in a low viscosity oil of ultraporous polymeric particles filled with water. In order to determine the convective heat transfer coefficient of this secondary refrigerant with water–ice phase change, an experimental set-up was built. It allows determining the local heat transfer coefficients inside two heat exchangers, having rectangular sections (80 × 8 mm2) of 1 m length, by mean of fluxmeters located along the working section. The slurry is first cooled and frozen in one of the exchangers, then heated and melted in the other exchanger. The results obtained for laminar or transitional flows shows that the heat transfer coefficients of the ice slurry are obviously higher than the heat transfer coefficients obtained with the single-phase fluid (oil). Correlations giving the local and global Nusselt numbers, depending on the Graetz or Reynolds numbers and on the particle mass fraction, have been established.  相似文献   

19.
Experimental investigation on R134a vapour ejector refrigeration system   总被引:6,自引:1,他引:5  
The experimental investigation of the performance of a vapour ejector refrigeration system is described. The system uses R134a as working fluid and has a rated cooling capacity of 0.5 kW. The influence of generator, evaporator and condenser temperatures on the system performance is studied. This kind of system can be operated with low grade thermal energy such as solar energy, waste heat, etc. The operating conditions are chosen accordingly as, generator temperature between 338 K and 363 K, condenser temperature between 299 K and 310.5 K, and evaporator temperature between 275 K and 285.5 K. Six configurations of ejectors of different geometrical dimensions are selected for the parametric study. The performance of the refrigeration system at different operating temperatures is presented.  相似文献   

20.
采用分布参数法对平行流冷凝器建立数学模型,对目前广泛使用的制冷剂R134a和低温制冷剂R404A和R410A在平行流冷凝器中的换热和流动性能进行模拟计算和分析比较。分别在相同和不同工况下。比较3种制冷剂的换热系数及压降等换热和流动性能参数。结果表明,在采用平行流冷凝器的汽车空调工况范围内,R410AR404A的流动和传热性能均优于R134a,更适宜用于汽车空调用平行流冷凝器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号