首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this article, dihydroxy polydimethylsiloxane (n = 5–10) was introduced into the structure of polyphosphate (PPE) to get siloxane‐modified polyphosphate (SiPPE). Five kinds of SiPPEs with different Si contents were obtained. FTIR (Fourier Transform Infrared spectroscopy) ICP (Inductively Coupled Plasma Emission Spectroscopy), 31P NMR (Nuclear Magnetic Resonance Spectroscopy) and TGA (Thermogravimetric Analysis) were used to characterize the composition and structure of PPE and SiPPEs. Six kinds of transparent fire‐resistive coatings were prepared by the mixing of amino resin with PPE and five kinds of SiPPEs. The results of the fire protection test showed that both the fire‐resistive time of coatings and intumescent factor of char layers increased with the increase in content of Si. The results of TGA demonstrated that the carbonaceous residue of coating also increased regularly. The hardness, flexibility, digital photos, SEM (Scanning Electronic Microscopy) and other testing results showed that the introduction of silicon oxygen segment can effectively improve the crack resistance. The charcoal layer structure was more solid than before and collapse was not obvious after long time flame shock. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42423.  相似文献   

2.
Three kinds of novel PEPA-containing polyether flame retardants were synthesized by 1-oxo-4-hydroxymethyl-2,6,7-trioxa-l-phosphabicyclo [2.2.2] octane (PEPA), phosphorus oxychloride (POCl3), and polyether with different structures (PEG, PPG, and PTMG). Their structures were confirmed by 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The solubility test showed that PEPA modified by polyethylene glycol (PEG) and polypropylene glycol (PPG) had better water solubility than that modified by poly(tetrahydrofuran) (PTMG). The decomposition process of PEPA-containing polyether flame retardants (PCPE) was studied by thermogravimetric analysis (TG) and derivative thermogravimetry. A possible mechanism was proposed to analyze the influence of polyether structure on the thermal degradation process of PCPEs. Afterward, the PEPA-containing polyether flame retardants were mixed with melamine formaldehyde resin to prepare the transparent fire-resistant coatings. The influences of polyether structure on the properties of the coatings were investigated in detail by fire protection test, TG, FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscope. It was found that the fire protection of the coating and foam structure of char layer were significantly improved when the number of carbon atoms in a unit of polyether chain was less. TG results showed that the chain unit of polyether with less carbon atom number could increase the residue weights of the coatings. FTIR and XPS result illustrated that the char layers were mainly composed of aromatic rings and phosphorus oxide, and the antioxidation and char-forming ability of coatings were enhanced effectively with the decrease in the number of carbon atoms in a unit of polyether chain.  相似文献   

3.
Nano-sized BN and micron-sized BN were used as fillers in fire-resistive coatings. The experimental results suggested that nano-BN with a multilayer structure could remarkably enhance the fire protection of fire-resistive coatings. Turbiscan data indicated that nano-sized BN had better dispersion stability in waterborne coatings than micron-sized BN. TGA results showed that nano-sized BN could enhance the thermal stability of the coatings, especially under high temperature. FTIR and EDS results exhibited that nano-sized BN was helpful in reducing the oxidation degree and enhancing the antioxidation property of the char layer under high temperature. The morphology observation demonstrated that nano-sized BN could improve the foam structure of the char layer so as to improve the mechanical strength of the char layer. Nano-sized BN was helpful for the even distribution of the cells; thus the efficiency of heat insulation of the char layer was enhanced. These results proved that nano-sized BN was beneficial to the forming and expanding of the intumescent char layer, and could provide better fire protection for the coatings.  相似文献   

4.
The influence of nano-boron nitride (BN) with a multilayered structure on the anti-aging property of fire-resistive coatings was studied. After accelerated weathering for 20 days, the thermal stabilities and fire protection of the coating without nano-BN were significantly decreased, but the coating modified by nano-BN still maintained excellent intumescent effect and fire protection. The results indicated that nano-BN could improve the anti-aging property of the coatings remarkably. FTIR and XPS characterizations suggested that nano-BN with a multilayered structure could prevent the migration behavior of the hydrophilic fire-retardant additives and keep the fixed ratio of those additives in the coating. TGA results demonstrated that nano-BN could effectively enhance the thermal stabilities of the aged coatings and improve the anti-oxidation property of the char layers formed by the coatings. XRD and EDS results proved that the anti-oxidation of the aged coatings under high temperature could be enhanced effectively after adding nano-BN. SEM observations illustrated that nano-BN addition was beneficial to the improvement of the foam structure of the aged coating.  相似文献   

5.
The changes in fire-resistive coatings during the aging process were studied. XPS results proved that the hydrophilic components in fire-resistive coatings migrated from the inside to the outside of the coating in the presence of moisture. This migration behavior changed the compositions and distributions in the coating. The changes of components weakened the intumescent performances of the coating. SEM observations showed that the aging process affected the forming of the foam structure, causing nonuniform distribution of the cells. The thermal stability of the coatings decreased during the aging time. TGA results indicated that the migration behavior also reduced the cooperation between the coating components. XRD spectra showed that less TiP2O7 was produced in the char layer after the aging tests, which would reduce the chemical strength of the char layer and the anti-ablation stability under high temperature. EDS results showed that the anti-oxidation property of the coating was also damaged by the aging test.  相似文献   

6.
The combination of self-crosslinking polyacrylate emulsion and silicone emulsion was used as a binder for the preparation of waterborne intumescent fire-resistive coatings. The influences of silicone emulsion on fire protection and char formation of the coatings were investigated in detail by means of TGA, SEM, energy dispersive spectroscopy analysis, rheological measurement, and fire protection tests. The results showed that using silicone emulsion improved thermal stability and antioxidation ability of the coating and increased the residue weights of the char layer at high temperature. Furthermore, an appropriate amount of silicone emulsion could improve the rheological property of the mixed binders and be conducive to the increase of the intumescent factor of the coatings, thus improving the fire protection of the coating significantly. However, an excess amount of silicone emulsion can lead to uneven dispersion of silicone emulsion in the mixed binder and cause an uneven distribution of cell size of the char layer.  相似文献   

7.
Glass flake (GF) was used as a modifier to improve the fire protection and water resistance of waterborne intumescent fire resistive coating. The influences of GF on the properties of the coatings were investigated in detail by using TGA, XRD, X-ray fluorescence spectrometry (XRF), SEM and fire protection test. The TGA results proved that addition of GF could enhance the anti-oxidation of the char layers and increase the residue weights of the coatings. The XRF results indicated that anti-oxidation of the coatings modified by GF was improved. The SEM images demonstrated that addition of GF could improve the foam structure of the coatings. After immersed in water over 600 h, the results showed that the thermal stability and fire protection of the coating without GF were significant decreased, but the coatings modified by GF could still maintain the excellent intumescent effect and fire protection.  相似文献   

8.
Intumescent coatings are the newest passive fireproofing materials which maintain structural integrity of high-rise buildings in fire events. The present work focuses on the influence of zirconium silicate as a heat-stable filler in intumescent coatings. Different coatings were formulated by varying the zirconium silicate concentration from 1, 3, 5, 8, and 10 on parts per hundred basis (phr). Fire performance of the coatings was then determined by fire test using a Bunsen burner fire flame at 950°C for 1 h. The degradation of coatings was examined by thermogravimetric analysis (TGA). The morphology of the intumescent chars was analyzed by environmental scanning electron microscopy. The char was also examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy. XRD confirmed the inertness of zirconium silicate with intumescent ingredients at high temperatures. TGA showed an increase in the weight residue of char at high temperature. The incorporation of zirconium silicate into intumescent coating forms a thermally stable char with better substrate adhesion. EDS analysis confirmed an increase in the antioxidation property of the char, and the fire test also confirmed an increase in char strength of coatings by the incorporation of zirconium silicate.  相似文献   

9.
水性超薄膨胀型钢结构防火涂料的制备   总被引:2,自引:1,他引:1  
刘斌  张德震  常宝 《涂料工业》2011,41(1):44-47,51
以有机硅改性的丙烯酸酯乳液为基料,多聚磷酸铵(APP)、季戊四醇(PER)、三聚氰胺(MEL)为膨胀阻燃体系,制备水性超薄膨胀型钢结构防火涂料;采用硼酸和可膨胀石墨(EG)改性防火涂料。研究表明,同时用w(硼酸)=4%,w(EG)=5%改性防火涂料,涂层的耐火极限达到93 min,热失质量分析(TGA)测试表明w(硼酸)=4%,w(EG)=5%共同改性的防火涂料在700℃时最终残炭量是44%。扫描电镜(SEM)分析结果表明硼酸/EG改性的残炭层形成了致密的"蜂窝"状结构。  相似文献   

10.
Polyphosphate ester (PPAE) made from poly(phosphoric acid), pentaerythritol, and 1,3-butylene glycol has been synthesized. The PPAE reacted with dimethyldichlorosilane (DMDCS) to improve its thermal stability and flame retardancy. Four silane-modified polyphosphate esters (SiPPAEs) were obtained. FTIR, 31P NMR, and 29Si NMR results showed that the Si Cl bond of DMDCS could react with the C OH and P OH bonds of PPAE, producing Si O C and P O Si bond in SiPPAEs. Different transparent coatings were obtained by mixing the PPAE and SiPPAEs with amino resin. The results of TGA showed that the stability of SiPPAEs was higher than that of PPAE. With the increase of silane content, the thermal stability of the coating increased. As the silane content increased within a certain range, the fire resistance and expansion coefficient increased. But too high silane content had adverse effects on the expansion and reduced the overall insulation effect. The digital photos and SEM/EDX microphotographs of coatings after combustion showed that silica segments could enriched in the surface to form a hard protective layer to prevent further degradation of the char layer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47199.  相似文献   

11.
以水性丙烯酸树脂为基体,聚磷酸胺、季戊四醇和三聚氰胺为膨胀阻燃体系,加入少量氧化石墨烯制备水性膨胀防火涂料。采用小板燃烧法研究了氧化石墨烯用量对膨胀型防火涂料的阻燃性能的影响。结果表明:加入极少量氧化石墨烯(<0.01%),可提高涂料的阻燃性,当氧化石墨烯含量在0.005%时,涂层的耐燃时间可达432 s,炭层膨胀高度较未加氧化石墨烯涂层增加了13.04%。结合红外光谱(FT-IR)、X射线衍射(XRD)和扫描电子显微镜(SEM)等表征手段对炭层形貌进行分析可知,加入氧化石墨烯后炭层在300~500 ℃范围的热稳定性提高,燃烧炭层完整密实,隔热性能提高,耐燃时间提高。  相似文献   

12.
采用MoO3、可膨胀石墨(EG)和MoO3/EG对APP/PER/MEL膨胀防火涂料进行改性,制备成改性涂料,运用隔热性能分析和热重分析(TGA)测试改性涂料的耐火极限和残碳率.结合扫描电镜分析结果,探讨MoO.EG和MoO3/EG对涂料耐火性能提高的途径分别为MoO3通过与APP/PER/MEL涂料体系作用提高了涂料残碳率;EG通过自身膨胀产生"蠕虫"结构显著改善了碳层结构;而MoO3/EG则通过MoO3和EG各自的作用,产生了明显的协同增效效果.  相似文献   

13.
The current study was designed to investigate the effects of expandable graphite (EG) on fire protection properties of intumescent fire-retardant coating for steel structures. Several formulations of intumescent coating were prepared and tested according to ISO 834 for char expansion. The chars were found without cracks and bonded with the steel substrate. The results showed that the coating slowly degraded during the test and char remained in contact with vertically tested coated substrate. The coated substrates were also tested for weather resistance using humid and ultraviolet environment. The char was characterized by using FESEM, XRD, FTIR, TGA, and XPS analysis. FESEM examined char morphology of the coatings after furnace fire test. XRD and FTIR showed the presence of graphite, borophosphate; boron oxide and sassolite in the char. TGA and DTGA results disclosed that EG improved the residual mass of coating. XPS analysis showed the percentages of carbon and oxygen are 48.50 and 43.45 in char of formulation with 12.8% EG. The results of weathering test coatings showed decreased in char expansion because of a humidity and UV light. The formulation with 9.8% EG showed the maximum char expansion and high residual mass among the formulations investigated in this study. The weathering tested coated samples showed their capability of fire protection.  相似文献   

14.
This research aims to study the effect of ammonium polyphosphate and expandable graphite on the intumescent coating formulations (ICF). The coating presented in this research article is based on carbon source expandable graphite (EG), blowing agent melamine, acid source ammonium polyphosphate (APP), epoxy resin as a binder with polyamide amine. The stability of the developed coating was verified at 950°C for 1-hour fire test. The results showed that the coating is stable and well bond with the steel substrate. The char was characterized by using FESEM, XRD, FTIR, DTA, TGA, XPS, Py-GCMS and Weathering Test. The morphology of the char was studied by SEM of the coating after furnace fire test. XRD and FTIR show the presence of graphite, borophosphate; boron oxide and sassolite in the residual char. TGA and DTG disclosed that EG improved the residual mass of coating. XPS analysis showed the char residue of IF5-APP-EG contains carbon and oxygen contents 47.50 and 40.70, respectively. Py-GCMS analysis described that the IF5-APP-EG released less gaseous compounds. The weathering test illustrated that's the char expansion of coatings samples was decreased due to the presence of a humid environment and UV light. The IF5-APP-EG showed the maximum char expansion, lower substrate temperature and high residual weight among the studied formulations.  相似文献   

15.
The fire performance of a curable-silicone based coatings containing expandable graphite (EG) and an organoclay is evaluated in hydrocarbon fire scenario (standard UL1709) using a lab-scale furnace test. It is shown that the use of organoclay allows achieving better performance. The influence of the clay as additional filler is investigated on the fire performance and on the mechanical properties of the char. It is shown that the clay increases significantly the mechanical properties of the char and hence, the fire performance of the silicone based coating. In a next part, the silicone/clay material was characterized by electron microscopy, wide-angle X-ray scattering and solid state 29Si nuclear magnetic resonance (NMR). It evidences the nanodispersion of the clay into the silicone matrix and two main interactions: (i) intercalation of some silicate layers and (ii) chemical reactions between the hydroxyl groups of the clay and the silicone matrix. Finally, X-ray fluorescence of the residue after fire testing shows the organoclay is present uniformly throughout the thickness of the char, due to the previous interaction, and hence increasing the cohesion of the char.  相似文献   

16.
A series of novel aluminum phosphate ester (APEA) flame retardants were synthesized by the salification of cyclic phosphate ester acid (PEA) with different mass ratios of aluminum hydroxide (ATH) and thoroughly characterized by Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance spectroscopy. The PEA and APEAs were thoroughly mixed with melamine formaldehyde resin to produce five kinds of transparent fire-retardant coatings. The synergistic effects of ATH on the thermal stability, flame retardancy, and smoke suppression properties of the coatings were investigated by different analytical instruments. The results show that the incorporation of ATH greatly decreases the weight loss, char index, flame spread rating, heat release rate, total heat release, smoke production rate, total smoke release and specific optical density in the coatings applied to plywood boards, which is ascribed to a more compact and intumescent char formed during burning, as determined from digital photographs and scanning electron microscopy images. The synergistic effects of ATH in the coatings depend on the content of ATH, and an excessive amount of ATH diminishes the synergistic effects on the flame retardancy and smoke suppression properties based on fire protection tests and cone calorimeter test. Thermo-gravimetric analysis reveals that the thermal stability and char-forming ability of the coatings gradually improve with increasing loading of ATH. FTIR analysis demonstrates that the incorporation of ATH forms a more phosphorus-rich crosslinked char and aromatic char during burning, thus effectively reducing the mass loss, heat release, and smoke production and exhibiting excellent synergistic flame retardant and smoke suppression effects in the coatings.  相似文献   

17.
A melamine polyphosphate (MPP)/dipentaerythritol (DPER) mixture was used as fire retardant additives for preparing waterborne intumescent fire resistive coating. The thermal degradation of the MPP/DPER mixture and of the coating was studied by TGA and FTIR. The resulting char of the coating was investigated by XPS, SEM and energy dispersive spectroscopy (EDS). The results showed that the thermal degradation behavior of the MPP/DPER mixture was similar to that of the coating. They decomposed to nonflammable gases, and formed intumescent char layer containing phosphorus oxide at high temperature. The EDS results proved that the resulting char was gradually oxidized with the temperature increase. The SEM micrographs showed that the average cell size of the char layers became bigger and the cell size distribution became wider as the temperature increased from 500 °C to 800 °C, and this non-uniform char layer could damage the fire protection of the coating.  相似文献   

18.
In order to improve the dispersion of nanosilica and the mechanical properties of UV-curable coating, nanosilica was modified with acrylsilane-containing tertiary amine structure, which was synthesized by the Michael addition reaction between 3-aminopropyl triethoxysilane and tripropylene glycol diacrylate. The prepared acrylsilane was characterized by 1H NMR, 13C NMR, and FTIR. The modified nanosilica was characterized by FTIR, TGA, and SEM. The TGA analysis showed that the grafting percentage of acrylsilane based on nanosilica was 72.4 wt%. The SEM results showed that the agglomeration of nanosilica was reduced and the dispersion was improved due to the acrylsilane modification. The viscosities of UV-curable coatings with modified nanosilica were determined and it was found that the viscosities of the coatings decreased in comparison with the viscosities of coatings with unmodified nanosilica. The photo-DSC results indicated that both nanosilica and modified nanosilica also decreased the UV-curing speed and final percentage conversion, while the conversion of the coatings containing modified nanosilica was faster than that with unmodified nanosilica owing to the tertiary amine structure and acrylate structure on the surface of the modified nanosilica.  相似文献   

19.
新型氨基树脂型钢结构防火涂料的制备   总被引:3,自引:1,他引:2  
研究了新型氨基树脂型钢结构防火涂料的制备工艺,并采用纳米氢氧化镁对防火涂料进行改性,提高了防火涂料的耐火性能,并对其作用机理进行了探讨。通过实验研究和理论分析,筛选出以热塑性丙烯酸树脂和脲醛树脂作为防火涂料的基料,选用三聚氰胺聚磷酸盐、三聚氰胺、季戊四醇组成P-N-C阻燃体系。得到了超薄型钢结构防火涂料制备的最佳工艺配方,测得该防火涂料的耐火时间为105 min,各项性能指标达到了国家标准。  相似文献   

20.
Inorganic–organic boron–silicon–acetylene hybrid polymer (PABS) was prepared by the polycondensation reaction between phenylboric acid and diphenyldichlorosilane and then terminated by phenylacetylene. The structure was characterized by using FTIR, 13C‐NMR, 1H‐NMR, and GPC. PABS was a kind of resin exhibited high viscous at room temperature and good solubility in common organic solvents. The thermal and oxidative properties were evaluated by DSC and TGA. Exothermal peak at 370°C observed by DSC was attributed to reaction of the acetylene units. PABS showed excellent thermal and oxidative stability, and TGA exhibited the temperature of 5% weight loss (Td5) was 625°C and char yield at 900°C was 90.0% in nitrogen. Surprisingly, both Td5 and char yield at 900°C showed slightly increase in air, which was 638°C and 90.9%, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号