首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huaili Qin 《Polymer》2005,46(19):8386-8395
The combustion behavior and thermal-oxidative degradation of polypropylene/clay nanocomposite has been studied in this paper. The influence of compatibilizer, alkylammonium, organoclay, protonic clay and pristine clay is considered, respectively. The decrease of heat release rate (HRR) is mainly due to the delay of thermal-oxidative decomposition of the composites. The active sites on clay layers can catalyze the initial decomposition and the ignition of the composites. On the other hand, the active sites can catalyze the formation of a protective coating char on the samples. Moreover, the active sites can catalyze the dehydrogenation and crosslinking of polymer chains. Accordingly, the thermal-oxidative stability is increased and HRR is decreased.  相似文献   

2.
Flame retardant mechanism of polyamide 6-clay nanocomposites   总被引:4,自引:0,他引:4  
The thermal and flammability properties of polyamide 6/clay (2 and 5% by mass fraction) nanocomposites were measured to determine their flame retardant (FR) performance. The gasification process of the nanocomposite samples at an external radiant flux of 50 kW/m2 in a nitrogen atmosphere was observed, and the residues collected at various sample mass losses were analyzed by thermogravimetric analysis, transmission electron microscopy, and X-ray diffraction to determine the content of the residue and to understand the FR mechanism of the nanocomposites. The analysis of the floccules of blackened residues shows that up to 80% by mass of the residues consists of clay particles and the remainder is thermally stable organic components with possible graphitic structure. Furthermore, clay particles are stacked in the carbonaceous floccule residues and the d-spacing of the clay platelets is in the range of 1.3-1.4 nm as compared to the well exfoliated original sample. The accumulation of the initially well-dispersed clay particles in the sample on the burning/gasifying sample surface are due to two possible mechanisms. One is recession of the polymer resin from the surface by pyrolysis with the de-wetted clay particles left behind. Another mechanism is the transportation of clay particles pushed by numerous rising bubbles of degradation products and the associated convection flow in the melt from the interior of the sample toward the sample surface. Numerous rising bubbles may have another effect on the transport of clay particles. Bursting of the bubbles at the sample surface pushes the accumulated clay particles outward from the bursting area and forms the island-like floccules instead of forming a continuous net-like structure of a clay filled protective layer. Therefore, both PA6/clay nanocomposite samples did not produce sufficient amounts of protective floccules to cover the entire sample surface and vigorous bubbling was observed over the sample surface which was not covered by the protective floccules.  相似文献   

3.
无卤阻燃高冲击强度聚苯乙烯体系研究进展   总被引:1,自引:0,他引:1  
综述了用合金化及添加蒙脱土、磷系阻燃剂、氮系阻燃剂、碳系阻燃剂、无机金属系阻燃剂等方法制备无卤阻燃高冲击强度聚苯乙烯的研究进展及阻燃机理;展望了无卤阻燃高冲击强度聚苯乙烯的发展方向。  相似文献   

4.
动态熔融插层HIPS/蒙脱土复合材料阻燃性能的研究   总被引:4,自引:1,他引:4  
采用动态熔融法分别制备高冲击强度聚苯乙烯/有机蒙脱土(HIPS/OMMT)复合材料和高冲击强度聚苯乙烯/钠基蒙脱土(HIPS/Na+-MMT)复合材料,利用锥形量热仪测试复合材料的阻燃性能,结果表明:HIPS/OMMT复合材料的热释放速率(HRR)、生烟速率(SPR)、质量损失速率(MLR)等燃烧性能参数均明显降低,表现出较好的阻燃性和抑烟性;Na+-MMT阻燃HIPS与OMMT阻燃HIPS复合材料比较,HIPS/OMMT复合材料的阻燃性明显优于HIPS/Na+-MMT。通过研究复合材料的阻燃性能,结合燃烧残余物的微观结构和宏观形貌分析,探讨了复合材料的阻燃机理。  相似文献   

5.
Abdulrahman Alfarraj 《Polymer》2004,45(25):8435-8442
Significant improvements in impact strength were achieved in polystyrene blends that combined conventional HIPS particles in combination with particles produced by compositional quenching. A commercial HIPS was solvated and blended with additional polystyrene, rubber and diblock copolymer, and the mixture was flash devolatilized to give the end-product. Impact strengths of injection and compression molded samples and tensile properties are reported. It is known that the best impact modified polystyrene obtained by compositional quenching, here called aHIPS, has smaller and lower modulus rubber particles than conventional HIPS, and has more than twice the impact strength of conventional HIPS. The novel blends of HIPS and aHIPS reported here exhibit synergism, the impact strength of the blend being higher than expected as a linear average of the component properties. The rubber phase volume including occlusion was held at 23%. An interior optimum in rubber efficiency (i.e. Izod impact per unit weight of rubber) was observed when 75% of the phase volume was derived from HIPS while an interior minimum was observed when 25% of the phase volume was derived from HIPS. The elongation at break and tensile impact strength exhibited a form of negative synergism, indicating that conventional HIPS is superior in low speed tests and aHIPS is better in high speed tests such as Izod.  相似文献   

6.
采用熔融共混法制备了高冲击强度聚苯乙烯(HIPS)/高性能纳米氢氧化铝(CG-ATH)/有机改性蒙脱土(OMMT)/包覆红磷(ERP)纳米复合材料,研究了OMMT和ERP用量对复合材料阻燃性能和力学性能的影响。结果表明:纳米CG-ATH、OMMT和ERP之间有很好的协效阻燃效果,当纳米CG-ATH用量为15%,OMMT用量为3%,ERP用量为10%时,HIPS复合材料的垂直燃烧可达到UL94V—0级,此时,复合材料具有较好的弯曲性能和拉伸性能,但冲击性能较差。  相似文献   

7.
A novel flame retardant, silicone elastomeric nanoparticle (S-ENP) with Tg of −120 °C and particle size of ∼100 nm has been developed and used as a modifier for polyamide 6 (nylon-6). It has been found that S-ENP can not only increase the toughness and improve the flame retardancy of nylon-6 but also helps unmodified clay exfoliate in nylon-6 matrix. It has been also found that the S-ENP and exfoliated clay platelet in nylon-6 have a synergistic flame retardant effect on nylon-6. A novel flame retardant nanocomposite of nylon-6/unmodified clay/S-ENP with high toughness, high heat resistance, high stiffness and good flowability has been prepared and a mechanism of synergistic flame retardancy has also been proposed.  相似文献   

8.
聚烯烃着色阻燃母料的研制   总被引:2,自引:1,他引:1  
张卫勤  王璐 《中国塑料》1998,12(5):85-88
介绍了聚烯烃(PO)着色阻燃双功能母料的配方设计、制造工艺及应用技术,并研究了着色阻燃母料对HDPE、PP力学性能和着色阻燃性能的影响。  相似文献   

9.
Different grades of impact-modified polystyrene were studied by viscometry, tensile impact test and colour change upon exposure to polychromatic irradiation at 55°C in air. The samples underwent extensive reduction in intrinsic viscosity [η] and tensile impact strength, and yellowed upon polychromatic irradiation (λ ≥ 290 nm). Chain-scission during photo-oxidative degradation was also studied under conditions where evolution of volatiles was negligible. Tristimulus values were calculated for unirradiated and irradiated samples. The rate of oxidative degradation was maximum in the sample possessing higher unsaturation content.  相似文献   

10.
Lijun Qian  Longjian Ye  Yong Qiu  Shuren Qu 《Polymer》2011,52(24):5486-5493
The flame retardant epoxy resin has been prepared by mixing the flame retardant additive hexa-(phosphaphenanthrene-hydroxyl-methyl-phenoxyl)-cyclotriphosphazene (HAP-DOPO) into diglycidyl ether of bisphenol-A (DGEBA). After cured by 4,4′-Diamino-diphenyl sulfone (DDS), the flame retardant properties of thermosets were characterized by the limited oxygen index (LOI), UL-94 test and cone calorimeter. The results show the lower peak of heat release rate (pk-HRR), the higher flammability rating than that of flame retardant epoxy resin by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), hexa-phenoxyl-cyclotriphosphazene (HPCP) and their mixture cloning the ratio of group component of HAP-DOPO. The degradation route of HAP-DOPO was disclosed by thermogravimetric analysis (TGA), the real time Fourier transform infrared spectra (FTIR), thermogravimetric analysis/infrared spectrometry (TGA-FTIR), pyrolysis gas chromatography mass/spectrometry (Py-GC/MS). During combustion, HAP-DOPO continues to release the PO radicals and o-phenylphenoxyl radical during two degradation stages from 200 °C for its unstable trisubstituted methyl structure of HAP-DOPO, inhibits the chain reaction of decomposition and exerts the flame retardant effect in gas phase. The phosphazene groups link with the residual phosphate from degraded phosphaphenanthrene, which increases the crosslink density of residue, effectively promotes the formation of high-strength, high-yield and phosphorus-rich char layer. The structure of HAP-DOPO shows a remarkable flame retardant molecular structure-effect on enhancing the flame retardant efficiency on thermosets.  相似文献   

11.
The flame retardant mechanism for silicone rubber induced by adding ppm order of a platinum compound, platinum (0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography. The thermal degradation measurement of the flame retardant silicone rubber sample (FR-SR) indicated that a considerable amount of methane was evolved from the FR-SR sample at around 400-800 °C while formations of cyclic siloxanes were fairly suppressed in comparison with that from the control SR sample. On the other hand, on the gas chromatogram of the hydrolysis products from the FR-SR residue samples thermally treated over 400 °C, significant amounts of characteristic products reflecting the cross-linking structures generating from methylene-bridge and trifunctional siloxane structures in the polymer chains were observed. These results suggest that the thermal decomposition of the FR-SR material is strongly suppressed by the formation of the cross-linking structures induced by the platinum compound during combustion, which leads to its flame retardancy.  相似文献   

12.
薄文海 《塑料科技》2007,35(12):58-61
研究了三(三溴新戊醇基)磷酸酯阻燃剂在阻燃高冲击强度聚苯乙烯中的应用,并与多溴二苯醚和溴化邻苯二甲酰亚胺衍生物进行了对比,结果表明:三(三溴新戊醇基)磷酸酯非常适用于阻燃高冲击强度聚苯乙烯。在UL94V—2级阻燃体系中,溴含量70%和磷含量3%的结合使阻燃剂用量小,而且产品有非常好的流动性,并有着显著的抗紫外线特点。  相似文献   

13.
Syndiotactic polystyrene (sPS)/organophilic clay nanocomposites were fabricated by direct‐melt intercalation method. To overcome the thermal instability of organophilic clay at high‐melt processing temperatures of sPS, an organophilic clay modified by alkyl phosphonium was adopted, which is known to be thermally stable. By using the newly synthesized clay, we could fabricate sPS intercalated nanocomposites. The microstructures of nanocomposites were confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The crystallization rate of nanocomposites investigated by differential scanning calorimetry (DSC) does not increase despite the presence of clay, which may be due to the physical hindrance of organic modifiers in the clay dispersion. Nanocomposites exhibited enhanced mechanical properties such as strength and stiffness relative to the virgin polymer. In addition, thermal stability was confirmed to be improved by thermogravimetric analysis (TGA). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2144–2150, 2004  相似文献   

14.
Exfoliated EVA/layered silicate nanocomposites were prepared by a masterbatch process using polymer-modified layered silicate instead of small molecule surfactant-modified clays. The nanocomposites exhibited improved mechanical properties and flame retardancy. Microscale flammability test showed that the heat release capacity (HRC) and total heat release (THR) were reduced by 21-24% and 16%, respectively. Radiant gasification studies revealed that the exfoliated EVA nanocomposites exhibited better improvements in flame retardant properties of EVA than did the corresponding intercalated nanocomposites. The peak mass loss rate of the exfoliated EVA nanocomposite containing about 5 wt% clay was reduced by 80% and the mass loss rate plot was spread over a much longer period of time. The mechanical and flammability tests revealed that the observed improvements in all the desirable properties were due to the presence of both the incorporated polymeric surfactant and the nanoclay.  相似文献   

15.
探究二乙基次磷酸铝(ADP)、三聚氰胺聚磷酸盐(MPP)及不同协效剂(勃姆石、无水硼酸锌(ZnB)、锡酸锌、三氧化钼)对PA9T阻燃性能的影响,且定量分析阻燃体系的分散性,同时分析阻燃体系的阻燃机理。结果表明:当m(ADP)∶m(MPP)=2∶1,PA9T/ADP/MPP的LOI值为38.5%,UL-94达到V-0级,阻燃效果最佳。PA9T/13.3%ADP/6.7%MPP的实际残炭率高于理论残炭率,表明ADP/MPP的引入促使PA9T在凝聚相交联成炭。协效剂对PA9T阻燃性能的影响程度排序为:ZnB>三氧化钼>锡酸锌>勃姆石。PA9T/FR/ZnB复合材料的烟气释放最低,燃烧后碳氢化合物的释放量显著降低,CO2释放量提高。复合材料燃烧后形成连续、致密的炭层,且炭层中存在磷酸类物质、碳氧化物及铝氧化物等,具有典型的凝聚相阻燃机理。  相似文献   

16.
Detrimental physical and mechanical properties are common problems for composites when their flame retardancy is improved through filler additions. An increased interest of the synergistic nanoparticle addition to improve the flame retardancy of natural fiber composites is the aim of this work. The paper investigates the synergistic effect of two different nanoparticles (halloysite nanotubes (HNTs) and montmorillonite (MMT) nanoclay) on the flame and mechanical properties in an intumescent ammonium polyphosphate (APP)-based polypropylene (PP)/kenaf composite system. First, the nature of nanoparticle dispersion in PP through X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveals that under twin screw compounding process, the partial exfoliation and intercalation have taken place within the nanocomposites. An increase in the decomposition temperature was observed under thermogravimetric analysis (TGA), with the presence of HNT. However, MMT tends to lower the maximum decomposition temperature under inert atmosphere. The flammability analysis in an intumescent flame retardant (IFR) system shows that the suitable amount of high aspect ratio nanoparticles with their exfoliation characteristics effectively helps to reduce the sustained combustion. Even though, improved stiffness properties can be observed with the presence of increased filler content, particle agglomeration tends to reduce the mechanical strengths of these composites due to low compatibilization and crack propagation.  相似文献   

17.
Nanocomposites of high-impact polystyrene (HIPS) with multi-walled carbon nanotubes (MWNT) were prepared by melt blending method. The flame retardant and smoke suppression mechanism of MWNT on HIPS were intensively investigated by transmission electron microscopy (TEM), thermogravimetric (TG) analysis, cone calorimeter method, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). It was found that the addition of MWNT has no marked effect on the degradation mechanism of the nanocomposites, but it significantly reduces the smoke production rates, total smoke release, smoke factor, heat release rates and mass loss rates of the material and forms a considerable volume of residue after burning. The flame retardant and smoke suppression mechanism are due to the formation of residue with featured?structure during combustion. The fine morphology of the residues for the composites showed that the residues of HIPS/MWNT nanocomposites assume a two-layer structure in sub-microscale and micro network structure in nanoscale. The two-layer structure includes a thin skin layer at the surface of the residue and an expanded cellular layer beneath the skin layer. It is the skin-cellular layer structure which considerably enlarges the thickness and volume of residue. Both the skin layer and cellular layer are constituted of MWNT, which are interconnected to form a network-like structure in nanoscale. It is a well combination of the skin-cellular layer and the nanoscale network structure that acts as a good insulation barrier to reduce flammability and smoke production of the composites.  相似文献   

18.
几种常用化学阻燃剂对HIPS点燃特性的影响   总被引:1,自引:1,他引:0  
管西龙  张军  张颖异 《塑料科技》2008,36(10):82-85
研究了几种常用化学阻燃剂对高冲击强度聚苯乙烯(HIPS)点燃特性的影响。结果表明:在热流强度为50kW/m2条件下,随着化学阻燃剂聚磷酸铵、三聚氰胺、四溴双酚A用量的增加,HIPS点燃时间先缩短后延长;只有较大用量的阻燃剂才能显现出对材料的阻燃作用。  相似文献   

19.
以新型成炭剂(CFA)、改性聚磷酸铵(MAPP)、乙烯-丙烯酸酯-马来酸酐三元共聚物熔融插层有机蒙脱土(EMH-OMMT)母粒复配成膨胀阻燃剂(IFR),与聚丙烯(PP)共混后通过流延薄膜机制备膨胀阻燃PP薄膜。对其进行了阻燃性能、力学性能测试,并运用热重分析表征了其热分解过程。相比未熔融插层OMMT和传统的4A分子筛协效剂,EMH-OMMT不仅提高了体系的阻燃性能,使薄膜(0.2mm)在IFR添加28%时通过了VTM-0级,而且明显提高了体系的力学性能。  相似文献   

20.
高透明抗冲聚苯乙烯中试研究   总被引:1,自引:1,他引:1  
王梅  刘源  李杨 《合成树脂及塑料》2001,18(3):13-15,21
在连续本体聚苯乙烯中试装置上对高透明抗冲聚苯乙烯树脂进行了研究。结果表明,中试产品冲击性能与增韧剂相当,比小试产品稍差。小试产品、中试产品及增韧剂具有相似的互穿网络结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号