首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were made to determine the influence of different reaction temperatures and residence times on biodiesel yield by transesterification of karanja oil (Pongamia pinnata) in the presence of methanol using a solid acid heterogeneous catalyst in a continuous process. Recycle runs were conducted by further transesterification of the organic phases (first run mixture of methyl ester and unconverted oil) in the presence of methanol under similar conditions. High-pressure liquid chromatography (HPLC) reveals poor biodiesel yield even with an increase in the reaction temperature and residence time in the first run. Biodiesel yield obtained from the recycle runs, however, was greatly increased over that of the first-run biodiesel yield. Recycle transesterification at a reaction temperature of 240°C and residence time of 50 min gives a maximum yield value of 97.74%. Consequently, irrespective of the presence of high free fatty acids and other impurities in karanja oil, recycling the organic phase of the first run significantly enhances the biodiesel yield.  相似文献   

2.

A hierarchical and computationally efficient mathematical model was developed to explain the polymerization of high-density polyethylene (HDPE) in an isothermal, industrial, continuous stirred tank slurry reactor (CSTR). A modified polymeric multi-grain model (PMGM) was used. Steady-state macroscopic mass balance equations were derived for all species (namely, monomer, solvent, catalyst and polymer) to obtain the final particle size and the required monomer and solvent input rates for a given catalyst input and the reactor residence time. The interphase mass transfer coefficients were calculated for the industrial CSTR using the operating data on the reactor. The present model was tuned with some data on an isothermal industrial reactor and the simulation results were compared with data on another set of industrial reactor. The comparison revealed that the present tuned model is capable of predicting the productivity and the polymer yield at various catalyst feed rates and the mean residence times. The effects of variation of two operating variables (catalyst feed rate and mean residence time) on the productivity, the polymer yield, the polydispersity index (PDI) and the operational safety were analyzed. The present study indicated that an optimal value of the reactor residence time (for maximum productivity per catalyst particle) exists at any catalyst feed rate.

  相似文献   

3.
为考察神华上湾煤的直接液化性能及反应动力学,以加氢蒽油-洗油混合油作为溶剂、负载型FeOOH作为催化剂,在0.01 t·d-1煤直接液化连续实验装置上考察了不同反应温度(435~465℃)、不同停留时间(7~110 min)下液化产品组成的演变规律。研究发现,随着煤的裂解及加氢反应的进行,煤及沥青类物质(PAA)收率不断减小,重质液化产物逐步向轻质液化产物转化。当反应温度为455℃、停留时间为90 min时,煤转化率为90.41%(质量分数(,油收率为61.28%(质量分数(。随着反应条件进一步苛刻,油收率下降。基于上湾煤直接液化反应特性及其产物收率变化规律建立了11集总煤直接液化反应动力学候选模型,以BFGS优化算法对实验数据搜索、选优,确定了动力学模型参数。检验结果表明所建立的动力学模型可用于恒温阶段直接液化行为的模拟计算。  相似文献   

4.
A reactor has been developed to produce high quality fatty acid methyl esters (FAME) from waste cooking palm oil (WCO). Continuous transesterification of free fatty acids (FFA) from acidified oil with methanol was carried out using a calcium oxide supported on activated carbon (CaO/AC) as a heterogeneous solid-base catalyst. CaO/AC was prepared according to the conventional incipient-wetness impregnation of aqueous solutions of calcium nitrate (Ca(NO3)2·4H2O) precursors on an activated carbon support from palm shell in a fixed bed reactor with an external diameter of 60 mm and a height of 345 mm. Methanol/oil molar ratio, feed flow rate, catalyst bed height and reaction temperature were evaluated to obtain optimum reaction conditions. The results showed that the FFA conversion increased with increases in alcohol/oil molar ratio, catalyst bed height and temperature, whereas decreased with flow rate and initial water content in feedstock increase. The yield of FAME achieved 94% at the reaction temperature 60 °C, methanol/oil molar ratio of 25: 1 and residence time of 8 h. The physical and chemical properties of the produced methyl ester were determined and compared with the standard specifications. The characteristics of the product under the optimum condition were within the ASTM standard. High quality waste cooking palm oil methyl ester was produced by combination of heterogeneous alkali transesterification and separation processes in a fixed bed reactor. In sum, activated carbon shows potential for transesterification of FFA.  相似文献   

5.
Huayang He 《Fuel》2007,86(3):442-447
A system for continuous transesterification of vegetable oil using supercritical methanol was developed using a tube reactor. Increasing the proportion of methanol, reaction pressure and reaction temperature can enhance the production yield effectively. However, side reactions of unsaturated fatty acid methyl esters (FAME) occur when the reaction temperature is over 300 °C, which lead to much loss of material. There is also a critical value of residence time at high reaction temperature, and the production yield will decrease if the residence time surpasses this value. The optimal reaction condition under constant reaction temperature process is: 40:1 of the molar ratio of alcohol to oil, 25 min of residence time, 35 MPa and 310 °C. However, the maximum production yield can only be 77% in the optimal reaction condition of constant reaction temperature process because of the loss caused by the side reactions of unsaturated FAME at high reaction temperature. To solve this problem, we proposed a new technology: gradual heating that can effectively reduce the loss caused by the side reactions of unsaturated FAME at high reaction temperature. With the new reaction technology, the methyl esters yield can be more than 96%.  相似文献   

6.
A system for the continuous methanolysis of palm oil using a liquid–liquid film reactor (LLFR) was developed and characterized. This reactor is a co-current, constant diameter (0.01 m), custom-made packed column where the mass transfer area between the partially miscible methanol-rich and vegetable oil-rich phases is created in a non-dispersive way, without the intervention of mechanical stirrers or ultrasound devices. An increase in contact area between phases enhances reaction rate while the absence of small, dispersed droplets of one phase into the other diminishes the settling time at the end of the reaction. In this study variations on the concentration of catalyst (sodium hydroxide), flow rate of palm oil and normalized length of the reactor (L/L max) were explored, keeping constant both the methanol to oil molar ratio and the temperature of the reaction (6:1 and 60 °C). The best experimental results with a reactor of 1.26 m (L/L max = 1.0) showed a conversion of palm oil of 97.5% and a yield of methyl esters of 92.2% of the theoretical yield, when the mass flow rate and the residence time of the palm oil were 9.0 g min−1 and 5.0 min, respectively. To determine the mean residence time and the degree of axial mixing in the reactor, a residence time distribution (RTD) study was performed using a step-function input. The dispersion model appears to fit well the RTD experimental data.  相似文献   

7.
In the current work, suitability of hyperbranched polyglycerol as a high loading catalyst support is demonstrated. A polyglycerol‐supported manganese‐salen complex (chemzyme) is applied as a homogeneous catalyst in the epoxidation of 6‐cyano‐2,2‐dimethylchromene. The recyclability of the corresponding catalyst was investigated in repetitive batch experiments as well as a continuous operation of the reaction in an ultrafiltration membrane reactor. An enhanced stability of the catalyst in repetitive batches was observed as a result of immobilization whereby the total turnover number increased from 23 in a single batch to 80 in four repetitive batches. To enable continuous operation, a continuously operated, stirred tanked reactor (CSTR) was equipped with an ultrafiltration membrane (MPF‐50) and a retention of 98% was determined. The continuous chemzyme membrane reactor was operated over the course of 20 residence times. After approximately 12 residence times, the steady state was reached yielding 70% conversion as well as an enantiomeric excess up to 92%. A space‐time yield (sty) of 458 g L −1 d−1 and a turnover frequency (TOFreaction) of up to 18 h−1 was reached in the steady state. It was determined that the total turnover number (TTN) was enhanced by a factor of 10 from 24 (batch) up to 240 for 20 residence times in CSTR operation.  相似文献   

8.
胡震 《辽宁化工》2010,39(3):240-241,254
研究了以玉米油、甲醇为原料,以氢氧化钠为催化剂制备生物柴油。对影响产品质量和产率的4个因素进行了系统的研究。结果表明,最佳反应条件为:原料配比m(玉米油)∶m(甲醇)=3∶1,氢氧化钠为玉米油质量的1%,反应温度60℃,回流反应时间70 m in。得到的生物柴油收率最高,可达95.33%。  相似文献   

9.
This work achieves continuous transesterification of soybean oil and methanol in a spinning disk reactor. The effects of the methanol-to-oil molar ratio, catalyst type, catalyst concentration, reaction temperature, flow rate, and rotational speed were investigated. Optimal yield of 96.9% was obtained with a residence time of 2–3 s at a molar ratio of 6, potassium hydroxide concentration of 1.5 wt%, temperature of 60 °C, flow rate of 773 mL/min, and rotational speed of 2400 rpm. The production rate of 1.86 mol/min was high compared to that of other reactors for continuous transesterification process, indicating that a spinning disk reactor is a promising alternative method for continuous biodiesel production.  相似文献   

10.
An environmentally benign process for the production of methyl ester using γ-alumina supported heterogeneous base catalyst in sub- and supercritical methanol has been developed. The production of methyl ester in refluxed methanol conventionally utilized double promoted γ-alumina heterogeneous base catalyst (CaO/KI/γ-alumina); however, this process requires a large amount of catalyst and a long reaction time to produce a high yield of methyl ester. This study carries out methyl ester production in sub- and supercritical methanol with the introduction of an optimized catalyst used in the previous work for the purpose of improving the process and enhancing efficiency. CaO/KI/γ-Al2O3 catalyst was prepared by precipitation and impregnation methods. The effects of catalyst amount, reaction temperature, reaction time, and the ratio of oil to methanol on the yield of biodiesel ester were studied. The reaction was carried out in a batch reactor (8.8 ml capacity, stainless steel, AKICO, Japan). Results show that the use of CaO/KI/γ-Al2O3 catalyst effectively reduces both reaction time and required catalyst amount. The optimum process conditions were at a temperature of 290 °C, ratio of oil to methanol of 1:24, and a catalyst amount of 3% over 60 min of reaction time. The highest yield of biodiesel obtained under these optimum conditions was almost 95%.  相似文献   

11.
Canola oil was transesterified using a 1 : 1 molar mixture of methanol and ethanol (M/E) with potassium hydroxide (KOH) catalyst. The effects of catalyst concentration (0.5–1.5 wt‐%), molar ratio of M/E to canola oil (3 : 1 to 20 : 1) and reaction temperature (25–75 °C) on the percentage yield measured after 2.5 and 5.0 min were optimized using a central composite design. A maximum percentage yield of 98% was obtained for a catalyst concentration of 1.1 wt‐% and an M/E to canola oil molar ratio of 20 : 1 at 25 °C at 2.5 min, whereas a maximum percentage yield of 99% was obtained for a catalyst concentration of 1.15 wt‐% and all molar ratios of reactants at 25 °C at 5 min. Statistical analysis demonstrated that increasing catalyst concentration and molar ratio of reactants resulted in curvilinear and linear trends in percentage yield, both at 2.5 and 5 min. However, reaction temperature, which affected the percentage yield at 2.5 min linearly, was insignificant at 5 min. The resultant mixed methyl/ethyl canola esters exhibited enhanced low‐temperature performance and lubricity properties in comparison to neat canola oil methyl esters and also satisfied ASTM D6751 and EN 14214 standards with respect to oxidation stability, kinematic viscosity, and acid value.  相似文献   

12.
Transesterification of waste cooking oil with methanol, using tri-potassium phosphate as a solid catalyst, was investigated. Tri-potassium phosphate shows high catalytic properties for the transesterification reaction, compared to CaO and tri-sodium phosphate. Transesterification of waste cooking oil required approximately two times more solid catalyst than transesterification of sunflower oil. The fatty acid methyl ester (FAME) yield reached 97.3% when the transesterification was performed with a catalyst concentration of 4 wt.% at 60 °C for 120 min. After regeneration of the used catalyst with aqueous KOH solution, the FAME yield recovered to 88%. Addition of a co-solvent changed the reaction state from three-phase to two-phase, but reduced the FAME yield, contrary to the results with homogeneous catalysts. The catalyst particles were easily agglomerated by the glycerol drops derived from the homogeneous liquid in the presence of co-solvents, reducing the catalytic activity.  相似文献   

13.
Methyl esters (ME) and triacetin production from the supercritical interesterification of the product from low pressure extraction (crambe seed oil and methyl acetate) are evaluated. Reactions are conducted at 300–375 °C for different residence times, at 20 MPa, and under these conditions the thermal stability of triacetin is evaluated. The effect of the free fatty acid (FFA) concentration (in oil) is determined. An increase in temperature favors the formation of ME and triacetin at shorter reaction times. At 375 °C, after 15 min a drop in the ME yield is observed and triacetin is not detected. A reduction in the triacetin concentration (reaching ≈99%) is observed at 375 °C. High FFA concentration (in oil) initially provided higher product generation, however, after 15 min no influence is observed. The highest ME yield (≈60%) is obtained at 300 °C, along with 1.22 wt% triacetin and ≈5.0 wt% unreacted compounds. Practical Applications: This paper reports new experimental data on an integrated process for the production of methyl esters from low pressure extraction (crambe seeds and methyl acetate) and supercritical reaction of the extraction mixture. The technique used allows the removal of a high quantity of oil from good quality crambe seeds. The viability of applying the integrated process to obtain oils with a high content of free fatty acids is verified, promoting the obtainment of relatively simple methyl esters. The procedure does not require oil purification and solvent recovery prior to the reaction.  相似文献   

14.
羰基合成醋酐联产醋酸工艺研究   总被引:4,自引:2,他引:2  
在确定选用均相铑系催化剂后,为了进一步研究中试放大,需对羰基合成小试工艺进行研究。实验采用贵金属铑为主催化剂,碘甲烷为助催化剂,以醋酸甲酯、甲醇和一氧化碳为原料,选用锆材高压釜,均相羰基化合成醋酐并联产醋酸。在温度180—200℃下,压力3.0—6.0MPa,催化剂质量分数700×10-6—1000×10-6,碘甲烷质量分数10%—15%和停留时间70—90min的工艺条件下,按一氧化碳计醋酐选择性为95.4%,CO转化率为97.4%,羰基产物醋酐收率为92.9%;催化剂的时空收率(按醋酐计)为38671.28g/(mol.h)。此工艺参数的提出可以初步指导中试放大并为工业化生产提供基础数据。  相似文献   

15.
新型碱性离子液体催化蓖麻油制备生物柴油   总被引:10,自引:0,他引:10  
合成了新型碱性离子液体[Bmim]OH,将其应用于催化蓖麻油制备生物柴油,并与催化剂KOH、四丁基氢氧化铵进行比较,结果好于后两者。正交实验优化的碱性离子液体[Bmim]OH催化工艺条件为:催化剂用量为1%,醇油摩尔比为6∶1,反应温度为40℃,反应时间为60 min。在该优化条件下,甲酯混合物收率高于97%,蓖麻油基本上完全转化,其中高于95%转化为产物甲酯,催化剂[Bmim]OH重复使用6次没有明显消耗,催化性能稳定。  相似文献   

16.
Continuous thermal degradation of two pyrolytic oils with low (LPO) and high boiling point distribution (HPO) was conducted in a constant stirrer tank reactor (CSTR) with bench scale. Raw pyrolytic oil as a reactant was obtained from the commercial rotary kiln pyrolysis plant for municipal plastic waste. The degradation experiment was conducted by temperature programming with 10 °C/min of heating rate up to 450 °C and then maintained with long lapse time at 450 °C. Liquid product was sampled at initial reaction time with different degradation temperatures up to 450 °C and then constant interval lapse time at 450 °C. The product characteristics over two pyrolytic oils were compared by using a continuous reaction system. As a reactant, heavy pyrolytic oil (HPO) showed higher boiling point distribution than that of diesel and also light pyrolytic oil (LPO) was mainly consisting of a mixture of gasoline and kerosene range components. In the continuous reaction, LPO showed higher yield of liquid product and lower residue than those of HPO. The characteristics of liquid products were influenced by the type of raw pyrolytic oil. Also, the result obtained under degradation temperature programming was described.  相似文献   

17.
The aim of this work was to investigate the optimum conditions in biodiesel production from waste frying oil using two-step catalyzed process. In the first step, sulfuric acid was used as a catalyst for the esterification reaction of free fatty acid and methanol in order to reduce the free fatty acid content to be approximate 0.5%. In the second step, the product from the first step was further reacted with methanol using potassium hydroxide as a catalyst. The Box-Behnken design of experiment was carried out using the MINITAB RELEASE 14, and the results were analyzed using response surface methodology. The optimum conditions for biodiesel production were obtained when using methanol to oil molar ratio of 6.1:1, 0.68 wt.% of sulfuric acid, at 51 °C with a reaction time of 60 min in the first step, followed by using molar ratio of methanol to product from the first step of 9.1:1, 1 wt.% KOH, at 55 °C with a reaction time of 60 min in the second step. The percentage of methyl ester in the obtained product was 90.56 ± 0.28%. In addition, the fuel properties of the produced biodiesel were in the acceptable ranges according to Thai standard for community biodiesel.  相似文献   

18.
In this comparative study, conversion of waste cooking oil to methyl esters was carried out using the ferric sulfate and the supercritical methanol processes. A two-step transesterification process was used to remove the high free fatty acid contents in the waste cooking oil (WCO). This process resulted in a feedstock to biodiesel conversion yield of about 85-96% using a ferric sulfate catalyst. In the supercritical methanol transesterification method, the yield of biodiesel was about 50-65% in only 15 min of reaction time. The test results revealed that supercritical process method is probably a promising alternative method to the traditional two-step transesterification process using a ferric sulfate catalyst for waste cooking oil conversion. The important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to oil, the catalyst amount and the reaction temperature. The analysis of oil properties, fuel properties and process parameter optimization for the waste cooking oil conversion are also presented.  相似文献   

19.
Hydropyrolysis of a mixture of Alberta coal and Athabasca bitumen was carried out in a batch reactor using calcium oxide as an alternate catalyst and the results were compared with those of widely used iron oxide and well-known NiMo/Al2O3 catalysts. Most of the reactions were done at temperatures of 500–540°C, residence time of 1 min and hydrogen pressure of 3.4 MPa. Maximum distillable oil (below 523°C) yield of 55 wt% and pitch conversion of 62 wt% were obtained in the presence of CaO or Fe2O3 and these values were higher than those without catalyst, although NiMo/Al2O3 catalyst gave much higher oil yield and pitch conversion. Catalyst concentration (above 2 wt%) has no consequence upon the distribution of various product fractions.

In another study, addition of 15% toluene to the feed in the absence of catalyst led to higher distillable oil yield (68 wt%) and pitch conversion (72 wt%) in the hydroconversion of coal and bitumen mixture. Increase in toluene concentration from 15 to 50 wt% had no positive effect on the product yields.  相似文献   


20.
The higher feedstock and processing costs for biodiesel production can be reduced by applying reactive distillation (RD) in transesterification process. The effects of reboiler temperature, amount of KOH catalyst, methanol to oil molar ratio and residence time on the methyl ester purity were determined by using a simple laboratory-scale RD packed column. The results indicated that from the empty column, the system reached the steady state in 8 h. Too high reboiler temperature and the amount of catalyst introduce more soap from saponification in the process. The optimal operating condition is at a reboiler temperature 90 °C, a methanol to oil molar ratio of 4.5:1.0, KOH of 1 wt.% respect to oil and 5 min of residence time in the column. This condition requires the fresh feed methanol 25% lower than in the conventional process and produces 92.27% methyl ester purity. Therefore this RD column can be applied in small or medium biodiesel enterprise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号