首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用熔融共混法研究了滑石粉、绢云母和碳酸钙分别对均聚聚丙烯(PPH)、嵌段共聚聚丙烯(PPB)、无规共聚聚丙烯(PPR)耐紫外光降解性能的影响,并通过色差分析、体视显微镜、傅里叶变换红外光谱等表征其微观结构和宏观性能。结果表明:PPB/无机填料复合材料的耐紫外光性能最好;与片层的滑石粉和绢云母相比,碳酸钙与聚丙烯基体的界面黏接性较差;PPH/绢云母、PPB/绢云母、PPR/绢云母的羰基指数分别为0.11,0.14,0.02;相较于其他两种无机填料,PPR/绢云母复合材料的羰基指数最小、耐紫外光性能较好。  相似文献   

2.
The effect of natural fibers (vetiver grass and rossells) on quiescent crystallization of polypropylene (PP) composites was analyzed in this study. Also, equilibrium melting temperature (T) of the composites was elucidated. Natural fiber‐PP composites showed lower T when compared to neat PP. Thermal analysis was performed via differential scanning calorimeter to study the crystallization kinetics. Natural fiber‐PP composites exhibited higher rate of crystallization than that of neat PP. Furthermore, spherulitic growth rate and transcrystallinity of the composites were investigated under a polarized light optical microscope. It was found that the growth rates of the composites were lower than that of neat PP. The spherulitic growth rates combined with the crystallization rates were used to calculate number of effective nuclei. It was shown that the number of effective nuclei of the composites was higher than that of neat PP. This suggested that natural fibers could act as a nucleating agent in the composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
P.D. Calvert  T.G. Ryan 《Polymer》1984,25(7):921-926
Ultra-violet microscopy has been used to follow the distribution of fluorescent additives during the isothermal crystallization and cooling of polypropylene. During cooling from the crystallization temperature there is a flow of additives away from the spherulite centres and into the spherulite boundaries. This demonstrates a marked densification at the centre of the spherulites with less within the bulk and only a small increase at the boundary. This change reverses when the sample is reheated to the crystallization temperature. Thus spherulites which appear to be quite uniform in crystallinity at high temperatures become non-uniform on cooling. The spherulites also become fibrous in appearance when cool. These effects are explained in terms of non-uniform concentrations of poorly crystallizable polymeric species which retard secondary crystallization.  相似文献   

4.
Commercial stearic acid treated calcium carbonate (CaCO3) was used to make a comparative study on rheological behavior of the CaCO3 and talc‐filled polypropylene (PP) hybrid composites with nontreated filler. Apparent shear viscosity and extrudate swell were investigated with variation of filler ratio and temperature with 30% by weight total of filler was used in PP composite. The Shimadzu capillary rheometer was used to evaluate shear viscosity and shear rate of the composite. It was found that the shear viscosities decrease with increasing shear rate. The apparent shear viscosity of the composite containing the stearic acid treated is slightly lower than untreated filler. Shear thickening behavior at higher shear rate has also shown by 15/15 treated composites at higher temperature about 220°C and investigation by SEM has proved that filler being densely packed at that condition. Treated composites also exhibit lower swelling ratio value than untreated composite, and swelling ratio also decreases linearly with increasing temperature and the die length–diameter ratio. It is believed that dispersion of filler play an important role not only on shear viscosity but also on swelling ratio of PP composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5421–5426, 2006  相似文献   

5.
研究了两种类型的成核剂对国产共聚聚丙烯的结晶形态以及拉伸强度、冲击强度的影响。结果表明:加入TMB-5型成核剂,聚丙烯的冲击强度有一定程度改善,w(TMB-5)为0.1%时,改性聚丙烯的缺口冲击强度达到最大;TMX-2型成核剂可改善聚丙烯的拉伸性能,但抗冲击性能降低较大;TMB-5型成核剂可显著地改变聚丙烯的结晶行为,诱导聚丙烯在结晶过程中主要形成β晶;TMX-2型成核剂可诱导聚丙烯在结晶过程中主要生成α晶,与纯PP相比,α晶的形成能力增强。  相似文献   

6.
分别采用硬脂酸钙和水合滑石粉作为卤素吸收剂生产拉丝级聚丙烯(PP)1102K,分析了两种卤素吸收剂对PP灰分、力学性能、黄色指数及后加工的影响。结果表明,采用硬脂酸钙可将产品灰分降低至250μg/g,并提高了产品的综合性能。  相似文献   

7.
The isothermal crystallization behavior and melting characteristics of pure polypropylene (PP) and PPs nucleated with a phosphate nucleating agent (A) and a sorbitol derivative (D) have been studied by differential scanning calorimetry (DSC). Compared with pure PP, nucleated PPs show a shorter half‐times of crystallization. Dependence of crystallization rate of nucleated PP on the crystallization temperature is stronger than that of pure PP at the higher crystallization temperature, whereas the opposite results are obtained at the lower crystallization temperature. Addition of nucleating agent shifts the temperature at the deviation from the baseline of DSC melting curve, T, and the temperature at the completion of melting, T, to higher temperatures, indicating that nucleated PPs exhibit a higher perfection of PP crystals. A shoulder peak in the high temperature range of melting peak of nucleated PP and a wider low temperature region in the melting peak of pure PP are observed. Obviously, PP and nucleated PPs form different distribution of crystal perfection in the isothermal crystallization process. According to the half‐time of crystallization, nucleating agent A is more effective than D. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2547–2553, 2000  相似文献   

8.
The isothermal and nonisothermal crystallization kinetics of nonnucleated and nucleated isotactic polypropylene (iPP) were investigated by DSC and a polarized light microscope with a hot stage. Dibenzylidene sorbitol (DBS) was used as a nucleating agent. It was found that the crystallization rate increased with the addition of DBS. The influence of DBS on fold surface energy, σe, was examined by the Hoffman and Lauritzen nucleation theory. It showed that σe decreased with the addition of DBS, suggesting that DBS is an effective nucleating agent for iPP. Ozawa's theory was used to study the nonisothermal crystallization. It was found that the crystallization temperature for the nucleated iPP was higher than that for nonnucleated iPP. The addition of DBS reduced the Ozawa exponent, suggesting a change in spherulite morphology. The cooling crystallization function has a negative exponent on the crystallization temperature. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2089–2095, 1998  相似文献   

9.
Isotactic polypropylene (iPP) has been crystallized in the presence of talc under the quiescent state and shear flow of injection molding. The resulting morphology has been investigated by means of polarizing microscopy, transmission electron microscopy, and wide angle X‐ray diffraction. In the quiescent state, the iPP lamellae grew from the surface of talc and the transcrystalline region was formed at the interface between iPP melt and the talc. The nucleation of iPP was very frequent on the cleavage plane of talc. The X‐ray diffraction pattern of the transcrystal showed a*‐axis orientation to the crystal growing direction. In injection‐molded samples of the talc‐filled iPP, the morphology of lamella growing from talc appeared as same as that of the transcrystal. However, the crystalline orientation of injection‐molded talc‐filled iPP, in which the b axis was oriented to the thickness direction and the a* and the c axis was oriented to the flow direction, was quite different from that of the transcrystal. This b‐axis orientation results from the orientation of the plate plane of talc, which induces the nucleation and the crystallization under shear flow. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1693–1703, 2001  相似文献   

10.
Talc‐filled polypropylene (PP) composites coupled with silane‐grafted polypropylene (PP‐g‐Si) were prepared. Effect of PP‐g‐Si on the mechanical properties, crystallization, and melting behavior of PP composites was investigated. Compared with the uncoupled composites, the mechanical properties of Talc/PP composites coupled with a small amount of PP‐g‐Si were increased to some extent. Meanwhile, PP‐g‐Si can promote crystallization rate and increase crystallization temperature of PP in the composites. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2974–2977, 2000  相似文献   

11.
The activity of isotactic polypropylene (iPP) nucleating additives during shear flow of composite materials is still not entirely explained. In current work the sol-gel method was employed to synthesize MgO·SiO2 filler, surface-modified with trivalent lanthanum. The crystallization of commercial iPP in the presence of 0.5% by weight La3+ modified or unmodified silicates was analyzed. The wide angle X-ray scattering analysis proved that the presence of even small amount of filler influences significantly on supermolecular structure of iPP. The results of microscope observations confirmed that the lanthanum-modified filler shows the nucleating ability for iPP. In that case a significant reduction of crystallization induction time was noticed. The investigation of iPP crystallization in composites after shear treatment confirmed that the increase of shear rate reduces the nucleating ability of additives. Moreover, the flow of filler particles during shearing may impede the shear-induced crystallization phenomenon.  相似文献   

12.
The effect of a particulate nucleating agent on fractionated crystallization of polypropylene (PP) was studied. A novel method utilizing breakup of PP nanolayers was used to obtain a dispersion of PP droplets in a polystyrene (PS) matrix. An assembly with hundreds of PP nanolayers alternating with thicker PS layers was fabricated by layer‐multiplying coextusion. The concentration of an organic dicarboxylic acid salt (HPN) nucleating agent in the coextruded PP nanolayers was varied up to 2 wt %. When the assembly was heated into the melt, interfacial driven breakup of the thin PP layers produced a dispersion of PP particles in a PS matrix. Analysis of optical microscope images and atomic force microscope images indicated that layer breakup produced a bimodal particle size distribution of submicron particles and large, micron‐sized particles. Almost entirely submicron particles were obtained from breakup of 12 nm PP layers. The fraction of PP as submicron particles dropped dramatically as the PP nanolayer thickness increased to 40 nm. Only large, micron‐sized particles were obtained from 200 nm PP nanolayers. The crystallization behavior of the particle dispersions was characterized by thermal analysis and wide angle X‐ray diffraction. Only part of the PP was nucleated by HPN. It was found that HPN was not effective in nucleating the population of submicron particles. The particulate HPN was too large to be accommodated in the submicron PP particles. On the other hand, the amount of nucleated crystallization qualitatively paralleled the fraction of PP in the form of large, micron‐sized particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
In this investigation the effects of a rosin‐type nucleating agent, which was prepared from cocrystallizing of dehydroabietic acid and Na‐dehydroabietate, on polypropylene (PP) crystallization were studied. The results of differential scanning calorimetry and X‐ray diffraction proved that a cocrystal of dehydroabietic acid and Na‐dehydroabietate was formed. The lower melting point of the cocrystal caused it to be uniformly dispersed in PP. When cocrystals were added as nucleating agent, the mechanical properties, heat distortion temperature, and crystallization temperatures of PP were obviously improved, and the size of spherulites was also decreased. This proved that the cocrystals of dehydroabietic acid and Na‐dehydroabietate could act as an effective nucleating agent for PP. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1069–1073, 2002  相似文献   

14.
Steady‐state and oscillatory shear behavior of three neat syndiotactic polypropylene (s‐PP) resins and a s‐PP resin (s‐PP#8) filled with CaCO3 particles of varying content, size, and type of surface modification were investigated. All of the neat s‐PP resins investigated exhibited the expected shear‐thinning behavior. Both the storage and loss moduli increased with decreasing temperature. The shift factors used to construct the master curves were fitted well with both the Arrhenius and the Williams–Landel–Ferry (WLF) equations. The inclusion of CaCO3 particles of varying content, size, and type of surface modification, to a large extent, affected both the steady‐state and oscillatory shear behavior of s‐PP/CaCO3 compounds, with the property values being found to increase with increasing content, decreasing size, and surface coating of the CaCO3 particles. Lastly, the effects of melt‐annealing and crystallization temperatures on isothermal crystallization behavior of s‐PP#8 filled with CaCO3 particles of varying content, size, and type of surface modification were also investigated. The half‐time of crystallization of neat s‐PP#8 exhibited a strong correlation with the choice of the melt‐annealing temperature (Tf) when Tf was less than about 160 °C, while it became independent of Tf when Tf was greater than about 160 °C. On the other hand, the half‐time of crystallization of s‐PP#8/CaCO3 compounds did not vary much with the Tf. Generally, the observed half‐time of crystallization decreased with increasing CaCO3 content and increased with increasing CaCO3 particle size. Finally, coating the surface of CaCO3 particles with either stearic acid or paraffin reduced the ability of the particles to effectively nucleate s‐PP#8. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4515–4525, 2006  相似文献   

15.
Organic nucleating agents and inorganic nanoparticles, as well as their hybrid composites, affect the crystallization temperature and morphology of the monoclinic α-form of isotactic polypropylene (iPP). Techniques such as differential scanning calorimetry, hot-stage optical microscopy with cross polars, wide angle X-ray diffraction, and transmission electron microscopy were employed. Nanoparticles of zinc oxide function as efficient supports for 1,3,5-benzene tricarboxylic-(N-2-methylcyclohexyl)triamine because the temperature at which the maximum rate of iPP crystallization occurs during 10 °C/min cooling from the molten state increases from 111 °C for the pure polymer to 125 °C at low concentrations of this hybrid nucleating agent. In the absence of zinc oxide, 0.06 wt% of this aliphatic triamine recrystallizes near 165 °C and increases the crystallization temperature of iPP by 7 °C, relative to the pure polymer. Fluorinated aromatic triamines, such as 1,3,5-benzene tricaboxylic-(N-4-fluorophenyl)triamine, are weak nucleating agents that reduce spherulite size in isotactic polypropylene but only increase the crystallization temperature marginally when the polymer is cooled from the molten state. Both micro- and nanoparticles of zinc oxide reduce spherulite size in isotactic polypropylene, but smaller spherulites are observed when the inorganic nanoparticles exhibit dimensions on the order of 40-150 nm relative to micron-size particles. In contrast, 0.06 wt% of the aliphatic triamine in iPP yields a distorted birefringent texture under cross polars that is not spherulitic. Non-spherulitic birefringent textures in iPP are also observed when the aliphatic triamine nucleating agent is coated onto micro- or nanoparticles of zinc oxide. This study demonstrates that the nonisothermal crystallization temperature of isotactic polypropylene increases by an additional 7 °C when an aliphatic triamine is distributed efficiently within the polymeric matrix by coating this nucleating agent onto zinc oxide nanoparticles.  相似文献   

16.
In this study, melting and isothermal crystallization behaviors of polypropylene (PP) nucleated with different nucleating agents (NAs) have been comparatively studied. α‐phase NA 1,3 : 2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988), β‐phase NA aryl amides compound (TMB‐5), and their compounds were introduced into PP matrix, respectively. The crystallization and melting characteristics as well as the crystallization structures and morphologies of nucleated PP were studied by differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD), and polarized light microscopy (PLM). As indicated by previous work that a few amounts of α‐phase NA (DMDBS) or β‐phase NA (TMB‐5) has apparent nucleation effect for PP crystallization. However, the crystallization of PP nucleated with compounding NAs is dependent on the content of each NA. In the sample of PP with 0.1 wt % DMDBS and 0.1 wt % TMB‐5, the nucleation efficiency of TMB‐5 is much higher than that of DMDBS and PP crystallization is mainly nucleated by TMB‐5, and in this condition, β‐phase PP is the main crystallization structure. For the sample of PP with 0.2 wt % DMDBS and 0.2 wt % TMB‐5, 0.2 wt % DMDBS has higher nucleation efficiency than 0.2 wt % TMB5, and α‐phase is the main crystalline structure in this sample. The isothermal crystallization kinetics and crystallization structure have been analyzed in detail in this work. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The effect of sodium benzoate on the isothermal crystallization behavior of isotactic polypropylene (iPP)/ethylene–propylene rubber(EPR) blends was investigated using differential scanning calorimetry. Dynamic mechanical and physical properties of the iPP/EPR blends nucleated with sodium benzoate were also measured. It was found that the crystallization behavior and physical properties such as heat deflection temperature (HDT), flexural modulus, and impact strength were strongly affected by the competition between the nucleating effect of EPR attributed to its partial compatibility with iPP and the simple addition of the amorphous component, as well as the nucleating effect of sodium benzoate. High impact strength was achieved by addition of EPR and sodium benzoate to iPP. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 201–211, 2002  相似文献   

18.
Two kinds of β-nucleating agents, named a rare earth complex (WBG) and a N,N′-dicyclohexylterephthalamide (TMB5), were introduced into isotactic polypropylene (iPP), and their effect on crystallization and melting behavior of iPP was comparatively investigated. Wide angle X-ray diffraction measurements revealed that both the two additives were highly effective in inducing β modification. At their respective optimum concentrations of 0.08 wt % for WBG and 0.06 wt % for TMB5, the relative amount of β-form calculated by Turner-Jones equation both exceeds 92%. However, the isothermal crystallization kinetics investigated by differential scanning calorimetry demonstrated that WBG had more pronounced effect than TMB5 in accelerating the overall crystallization rate. The Lauritzen–Hoffman theory analysis also revealed that WBG was more effective not only in increasing the nucleus number but also in accelerating the growth rate of crystallization. After completing isothermal crystallization process, the subsequent melting behavior examination suggested that the addition of WBG expanded the upper limit temperature of forming β modification, and therefore was more effective in delaying the β-α transformation than TMB5. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Combined effect of α‐nucleating agent (NA) sodium 2,2′‐methylene‐bis(4,6‐di‐tert‐butylphenyl) phosphate (NA11) and nanoclay (NC) on the mechanical properties and crystallization behavior of isotactic polypropylene (iPP) was investigated by mechanical testing, wide‐angle X‐ray scattering (WAXD), differential scanning calorimetry (DSC), polarized optical microscopy (POM), and scanning electron microscopy (SEM). The mechanical testing results indicated that the separate addition of NA11 and NC only increased the stiffness of iPP while the combined addition of NA11, NC, and maleic anhydride grafted polypropylene (PP‐g‐MA) simultaneously improved stiffness and toughness of iPP. Compared to pure iPP, the tensile strength, the flexural modulus, and impact strength of iPP composites increased 9.7, 38.6, and 42.9%, respectively. The result indicated good synergistic effects of NC, NA11, and PP‐g‐MA in improving iPP mechanical properties. WAXD patterns revealed NA11, and NC only induced the α‐crystals of iPP. SEM micrograph showed that the PP‐g‐MA could effectively improve the dispersing of NC in iPP. Finally, the nonisothermal crystallization kinetics of neat iPP and PP nanocomposites was described by Caze method. The result indicated that the addition of NA overcame the shortcoming of low crystallization rate of NC nanocomposites and maintained the excellent mechanical properties, which is another highlight of the combined addition of NAs and nanoclay. Meanwhile, the result showed that nuclei formation and spherulite growth of iPP were affected by the presence of NA and nanoclay. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The directional solidification of polypropylene (PP) films results in an oriented semicrystalline microstructure and may offer a method to improve the properties of a product. The directional solidification of isotactic PP samples blended with 0% to 50% atactic PP, by mass, was therefore studied. The effects of composition and processing conditions were monitored to determine how they affect the quality and microstructure of the directionally solidified films. Difficulty was encountered in reproducing testable samples with a unidirectional crystal microstructure. Tensile testing of directionally solidified films was used to quantify the yield strength and elastic modulus of the films. These properties were compared with those of other PP films. The tensile test results do not support the hypothesis that enhanced mechanical properties were produced by directional solidification of the PP films. Improving the sample fabrication method and optimizing the processes involved may, however, lead to directionally solidified PP films with enhanced mechanical properties. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1516–1528, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号