共查询到19条相似文献,搜索用时 46 毫秒
1.
BP网络中,隐层神经元的数目直接影响着整个网络的性能和效率,因而对BP网络的结构优化是一个非常重要的环节.本文对相关性剪枝算法进行了改进,采用减法聚类方法确定初始的网络结构,然后再用传统相关性剪枝算法重复优化网络.通过实验结果的分析,验证了改进的神经网络相关性剪枝算法对BP网络结构优化的有效性. 相似文献
2.
3.
4.
决策树是一种有效的分类方法,但在构建决策树模型的过程中,常常会出现模型过度拟合的现象。利用基于BP神经网络的决策树剪枝算法(BP-Pruning)进行软剪枝处理,然后根据BP-Pruning的一些不足,提出一种改进算法,简称GBP-Pruning算法。该算法通过引入遗传算法来训练BP-Pruning算法模型中的权值和阈值,从而克服了BP-Pruning算法上的不足,最后验证了GBP-Pruning算法的可行性。 相似文献
5.
针对机械设备具有模糊性和非线性的特点,提出了一种利用扩展T-S模糊模型的,自适应PSO算法和BP神经网络相结合的新型智能结构优化算法。通过自适应的高斯函数来更改基本T-S模糊模型中的隶属度函数,进而使用扩展的T-S模糊模型来调整PSO算法的参数。以BP 神经网络隐含层神经元数目为设计变量,提取训练后的均方误差作为评价函数,用改进后的粒子群算法进行寻优。把优化后的网络模型应用于轮盘结构优化中,实验表明,该方法在保证轮盘性能的同时,对其结构进行了重新优化,是一种可行的结构优化方法。 相似文献
6.
人工神经网络的训练问题实质上是一个优化问题。将模拟退火算法和基本粒子微粒群算法相结合,提出一种基于模拟退火的微粒群算法,该算法能够有效抑制早熟收敛。利用基于模拟退火微粒群算法优化BP神经网络的权值和阀值,有效的解决了BP算法易陷入局部极小值的缺点,从而提高了神经网络的精度和收敛速度。通过对非线性系统进行Matlab仿真研究,实验结果表明,基于模拟退火的微粒群算法训练的神经网络是一种有效的辨识方法。 相似文献
8.
《计算机应用与软件》2016,(11)
针对传统GAP-RBF算法学习精度不够高的问题,提出一种基于群体划分优化的GAP-RBF网络学习方法。首先,为了克服传统GAP-RBF中存在的大型矩阵的计算问题,用DEKF(Decoupled EKF)方法调整网络参数;其次,为了获得学习精度更高的网络模型,算法利用基于PSO和GA的群体划分优化方法来训练隐含层和输出层的连接权值以及偏移项。实验结果表明,与RAN、RANEKF、MRAN和GAP-RBF算法相比,提出的算法可获得更精简的网络结构,同时提高了学习精度。 相似文献
9.
基于模糊物元PSO混合优化算法的客户创意挖掘* 总被引:1,自引:0,他引:1
针对具有模糊性、缺乏系统性和主题性的新产品开发模糊前端客户创意,提出一种基于模糊物元和改进微粒群算法的混合启发式挖掘方法。首先将模糊理论引入物元分析,将客户的个性化要求、特征及相应的模糊量值结合起来建立其形式化模糊物元模型, 应用模糊物元优化方法将客户多需求优化问题转换为单需求优化问题;然后给出了最优客户创意的自适应变异微粒群(AMPSO)算法的求解方法,并与遗传算法加以比较,证明该算法的有效性和先进性。最后将该算法应用于某型号汽车外观造型设计的客户创意挖掘中,有效指导了产品创新的实施。 相似文献
10.
一种优化模糊神经网络的多目标微粒群算法 总被引:1,自引:0,他引:1
模糊神经网络优化是一个多目标优化问题.通过对模糊神经网络和微粒群算法的深入分析,提出了一种多目标微粒群算法.在算法中将网络的精确性和复杂性分别作为目标进行优化,再用一种启发性分量加权均值法来选取个体极值和全局极值.算法能够引导粒子较快地向非劣最优解区域移动并最终获得多个非劣最优解,为模糊神经网络的精确性和复杂性的折中寻优问题提供了一种解决方法.茶味觉信号识别的仿真实验验证了该算法的有效性. 相似文献
11.
提出了一种改进混沌粒子群算法(MCPSO)与BP算法的混合算法(MCPSO—BP),该算法综合了改进粒子群算法全局寻优的高效性,混沌算法局部搜索的遍历性和BP算法快速的局部搜索能力。仿真结果表明,MCPSO—BP算法网络结构简单,收敛速度快,并具有良好的逼近能力和泛化能力。 相似文献
12.
针对深度神经网络(DNN)的参数和计算量过大问题,提出一种基于贝叶斯优化的无标签网络剪枝算法。首先,利用全局剪枝策略来有效避免以逐层方式修剪而导致的模型次优压缩率;其次,在网络剪枝过程中不依赖数据样本标签,并通过最小化剪枝网络与基线网络输出特征的距离对网络每层的压缩率进行优化;最后,利用贝叶斯优化算法寻找网络每一层的最优剪枝率,以提高子网搜索的效率和精度。实验结果表明,使用所提算法在CIFAR-10数据集上对VGG-16网络进行压缩,参数压缩率为85.32%,每秒浮点运算次数(FLOPS)压缩率为69.20%,而精度损失仅为0.43%。可见,所提算法可以有效地压缩DNN模型,且压缩后的模型仍能保持良好的精度。 相似文献
13.
针对单个神经网络分类准确率低、RUSBoost算法提高NN分类器准确率耗时长的问题,提出了一种混合RUSBoost算法和积矩系数的分类优化算法。首先,利用RUSBoost算法生成m组训练集;然后,依据Pearson积矩系数计算每组训练集属性的相关程度消除冗余属性,生成目标训练集;最后,新的子训练集训练神经网络分类器,选择最大准确率分类器作为最终的分类模型。实验中使用了4个Benchmark数据集来验证本文算法的有效性。实验结果表明,本文提出的算法的准确率相较于传统的算法最大提升了8.26%,训练时间最高降低了62.27%。 相似文献
14.
以某钢厂引进的板坯连铸二冷控制为研究对象,针对现有控制系统由于铸坯表面目标温度是预先设定的固定值,存在二冷水量波动大、铸坯质量不稳定等缺陷,设计了基于改进PSO算法的目标温度模糊神经网络控制器,在遵守冶金准则的前提下,根据浇注钢种与拉速、中包温度变化量动态控制目标温度。仿真结果表明:该控制器控制误差小,适应范围广,可以满足生产要求。提出了模糊神经网络的改进PSO算法,阐述了其基本思想、改进之处及其实施过程。研究结果对引进的同类连铸板坯二冷控制系统的升级改造具有指导意义。 相似文献
15.
针对四旋翼飞行器自抗扰控制器参数较多,人工整定困难且难以得到最优控制效果的问题,提出一种基于改进粒子群算法的四旋翼自抗扰控制器优化方法。在设计了四旋翼飞行器的自抗扰控制器之后,将自抗扰控制器的参数作为粒子群中的粒子进行迭代寻优,同时在传统的粒子群算法基础上,参考遗传算法,对适应值不好的粒子进行交叉保优,以提高粒子的多样性,加快寻优速度。仿真结果表明,对比人工整定参数的控制器,优化后的控制器超调更小,调节时间更快。该方法能够解决四旋翼飞行器自抗扰控制器人工参数整定困难的问题,且优化后的控制器具有更好的控制效果。 相似文献
16.
针对离散混沌系统,提出一种基于融合Powell法的粒子群优化策略(Powell-PSO算法)的神经滑模等效控制方法。该方法通过将BP神经网络的输出作为滑模等效控制的切换部分的系数,有效地克服了传统滑模等效控制的抖振现象;利用Powell-PSO算法对神经滑模控制器的参数进行全局优化,提高了离散混沌系统的控制品质。仿真实验结果表明,所提出的方法无需了解离散混沌系统精确模型,具有响应速度快、控制精度高以及抗干扰能力强的优点。 相似文献
17.
针对RBF神经网络隐含层节点数过多导致网络结构复杂的问题,提出了一种基于改进遗传算法(IGA)的RBF神经网络优化算法。利用IGA优化基于正交最小二乘法的RBF神经网络结构,通过对隐含层输出矩阵的列向量进行全局寻优,从而设计出结构更优的基于IGA的RBF神经网络(IGA-RBF)。将IGA-RBF神经网络的学习算法应用于电子元器件贮存环境温湿度预测模型,与基于正交最小二乘法的RBF神经网络进行比较的结果表明:IGA-RBF神经网络设计出来的网络训练步数减少了44步,隐含层节点数减少了34个,且预测模型得到的温湿度误差较小,拟合精度大于0.95,具有更高的预测精度。 相似文献
18.
为了解决虚拟企业中的任务分配问题,建立了任务分配的多目标决策优化模型。分析了传统的PSO算法,通过设置算法中速度惯性权重和加速度系数的自动调整,以及引入遗传算法中的变异操作,实现了对该算法的改进。基于改进的PSO算法求解任务分配模型,研究了求解问题与粒子的映射以及采用TOPSIS计算粒子位置适应度的方法,进而设计了一种基于改进PSO算法的任务分配算法。通过应用实例及仿真实验,证明了改进的PSO算法应用于任务分配的可行性和有效性。 相似文献
19.
改进的粒子群优化模糊C均值聚类算法 总被引:5,自引:4,他引:5
针对传统模糊C均值聚类算法(FCM)存在对初值敏感和易陷入局部收敛的缺陷,利用改进的粒子群算法对FCM进行优化,提出一种新的模糊C均值聚类算法Improved PSOFCM,并建立基于熵的聚类有效性函数,对聚类算法的性能进行客观评价。数据集实验表明,Improved PSOFCM算法不仅能克服传统FCM算法的不足,而且在聚类正确率和有效性上也优于基于粒子群与基于遗传优化的FCM算法。 相似文献