首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magneto immunoassay-based strategies for the detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) related to malaria are described for the first time by using magnetic micro- and nanoparticles. The covalent immobilization of a commercial monoclonal antibody toward the HRP2 protein in magnetic beads and nanoparticles was evaluated and compared. The immunological reaction for the protein HRP2 was successfully performed in a sandwich assay on magnetic micro- and nanoparticles by using a second monoclonal antibody labeled with the enzyme, horseradish peroxidase (HRP). Then, the modified magnetic particles were easily captured by a magneto sensor made of graphite-epoxy composite (m-GEC) which was also used as the transducer for the electrochemical detection. The performance of the immunoassay-based strategy with the electrochemical magneto immunosensors was successfully evaluated and compared with a novel magneto-ELISA based on optical detection using spiked serum samples. Improved sensitivity was obtained when using 300 nm magnetic nanoparticles in both cases. The electrochemical magneto immunosensor coupled with magnetic nanoparticles have shown better analytical performance in terms of limit of detection (0.36 ng mL(-1)), which is much lower than the LOD reported by other methods. Moreover, at a low level of HRP2 concentration of 31.0 ng mL(-1), a signal of 15.30 μA was reached with a cutoff value of 0.34 μA, giving a clear positive result with a non-specific adsorption ratio of 51. Due to the high sensitivity, this novel strategy offers great promise for rapid, simple, cost-effective, and on-site detection of falciparum malaria disease in patients, but also to screen out at-risk blood samples for prevention of transfusion-transmitted malaria.  相似文献   

2.
Du D  Wang J  Lu D  Dohnalkova A  Lin Y 《Analytical chemistry》2011,83(17):6580-6585
A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53(392)), Ser15 (phospho-p53(15)), Ser46 (phospho-p53(46)), and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes, and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by a multienzyme amplification strategy using gold nanorods (AuNRs) as nanocarrier for coimmobilization of horseradish peroxidase (HRP) and detection antibody (Ab(2)) at a high ratio of HRP/Ab(2), which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min; thus, the whole sandwich immunoreactions could be completed in less than 5 min. Under optimal conditions, this method could simultaneously detect phospho-p53(392), phospho-p53(15), phospho-p53(46), and total p53 ranging from 0.01 to 20 nM, 0.05 to 20 nM, 0.1 to 50 nM, and 0.05 to 20 nM with detection limits of 5 pM, 20 pM, 30 pM, and 10 pM, respectively. Accurate determinations of these proteins in human plasma samples were demonstrated by comparison to the standard ELISA method. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics.  相似文献   

3.
Das J  Jo K  Lee JW  Yang H 《Analytical chemistry》2007,79(7):2790-2796
Signal amplification and noise reduction are crucial for obtaining low detection limits in biosensors. Here, we present an electrochemical immunosensor in which the signal amplification is achieved using p-aminophenol (AP) redox cycling by hydrazine, and the noise level is reduced by implementing a low background current. The redox cycling is obtained in a simple one-electrode, one-enzyme format. In a sandwich-type heterogeneous immunosensor for mouse IgG, an alkaline phosphatase label converts p-aminophenyl phosphate into AP for 10 min. This generated AP is electrooxidized at an indium tin oxide (ITO) electrode modified with a partially ferrocenyl-tethered dendrimer (Fc-D). The oxidized product, p-quinone imine (QI), is reduced back to AP by hydrazine, and then AP is electrooxidized again to QI, resulting in redox cycling. Moreover, hydrazine protects AP from oxidation by air, enabling long incubation times. The small amount of ferrocene in a 0.5% Fc-D-modified ITO electrode, where 0.5% represents the ratio of ferrocene groups to dendrimer amines, results in a low background current, and this electrode exhibits high electron-mediating activity for AP oxidation. Moreover, there is insignificant hydrazine electrooxidation on this electrode, which also results in a low background current. The detection limit of the immunosensor using a 0.5% Fc-D-modified electrode is 2 orders of magnitude lower than that of a 20% Fc-D-modified electrode (10 pg/mL vs 1 ng/mL). Furthermore, the presence of hydrazine reduces the detection limit by an additional 2 orders of magnitude (100 fg/mL vs 10 pg/mL). These results indicate that the occurrence of redox cycling combined with a low background current yields an electrochemical immunosensor with a very low detection limit (100 fg/mL). Mouse IgG could be detected at concentrations ranging from 100 fg/mL to 100 microg/mL (i.e., 9 orders of magnitude) in a single assay.  相似文献   

4.
Liu G  Lin YY  Wang J  Wu H  Wai CM  Lin Y 《Analytical chemistry》2007,79(20):7644-7653
We describe a disposable electrochemical immunosensor diagnosis device that integrates the immunochromatographic strip technique with an electrochemical immunoassay and exploits quantum dot (QD, CdS@ZnS) as labels for amplifying signal output. The device takes advantage of the speed and low cost of the conventional immunochromatographic strip test and the high sensitivity of the nanoparticle-based electrochemical immunoassay. A sandwich immunoreaction was performed on the immunochromatographic strip, and the captured QD labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable screen-printed electrode, which is embedded underneath the membrane on the test zone. The new device coupled with a portable electrochemical analyzer shows great promise for in-field and point-of-care quantitative testing of disease-related protein biomarkers. The parameters (e.g., voltammetric measurement of QD labels, antibody immobilization, the loading amount of QD-antibody, and the immunoreaction time) that govern the sensitivity and reproducibility of the device were optimized with IgG model analyte. The voltammetric response of the optimized device is highly linear over the range of 0.1-10 ng mL(-1) IgG, and the limit of detection is estimated to be 30 pg mL(-1) in association with a 7-min immunoreaction time. The detection limit was improved to 10 pg mL(-1) using a 20-min immunoreaction time. The device has been successfully applied for the detection of prostate-specific antigen (PSA) in human serum sample with a detection limit of 20 pg mL(-1). The results were validated by using the commercial PSA enzyme-linked immunosorbent assay kit and showed high consistency. The new disposable electrochemical diagnosis device thus provides a rapid, clinically accurate, and quantitative tool for protein biomarker detection.  相似文献   

5.
Lai G  Yan F  Wu J  Leng C  Ju H 《Analytical chemistry》2011,83(7):2726-2732
A novel ultrasensitive multiplexed immunoassay method was developed by combining alkaline phosphatase (ALP)-labeled antibody functionalized gold nanoparticles (ALP-Ab/Au NPs) and enzyme-Au NP catalyzed deposition of silver nanoparticles at a disposable immunosensor array. The immunosensor array was prepared by covalently immobilizing capture antibodies on chitosan modified screen-printed carbon electrodes. After sandwich-type immunoreactions, the ALP-Ab/Au NPs were captured on an immunosensor surface to catalyze the hydrolysis of 3-indoxyl phosphate, which produced an indoxyl intermediate to reduce Ag(+). The silver deposition process was catalyzed by both ALP and Au NPs, which amplified the detection signal. The deposited silver was then measured by anodic stripping analysis in KCl solution. Using human and mouse IgG as model analytes, this multiplexed immunoassay method showed wide linear ranges over 4 orders of magnitude with the detection limits down to 4.8 and 6.1 pg/mL, respectively. Acceptable assay results for practical samples could be obtained. The newly designed strategy avoided cross talk and the need of deoxygenation for the electrochemical immunoassay and, thus, provided a promising potential in clinical applications.  相似文献   

6.
Liposomes are potential candidates as nanovesicles for the development of detection systems with improved sensitivity and detection limits, due to their capacity to encapsulate diverse types of signal enhancing molecules. An amperometric immunosensor exploiting enzyme encapsulating thermosensitive liposomes for the ultrasensitive detection of carcinoembryonic antigen (CEA) is reported. Five different bioconjugation methods to link an anti-CEA antibody to horseradish peroxidase (HRP) encapsulating liposomes were studied and compared to HRP-Ab conjugate. ζ-Potential measurements of liposomes before and after each modification method as well as following incubation with CEA were used as a tool to monitor the success of modification and probe the affinity of the liposome linked antibodies. The use of different lysing conditions (temperature vs detergent) was evaluated, with the application of temperature providing an extremely effective means of liposome lysis. Finally, thermosensitive liposomes modified using biotin-streptavidin and N-succinimidyl-S-acetylthioacetate (SATA)/sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-1-carboxylate (Sulfo-SMCC) chemistries were used to detect CEA and compared in terms of their stability, background signal, and limit of detection. Detection limits of 2 orders of magnitude lower than that obtained with the HRP-antibody reporter conjugate were obtained (0.080 ng CEA/mL and 0.0113 ng CEA/mL), with 11-fold and 9-fold amplification of signal, for the biotin-streptavidin and SATA/Sulfo-SMCC modified liposomes respectively, clearly demonstrating the powerful potential of enzyme encapsulating liposomes as signal enhancement tools.  相似文献   

7.
Dai Z  Yan F  Chen J  Ju H 《Analytical chemistry》2003,75(20):5429-5434
A novel strategy for immunoassay and the preparation of reagentless immunosensors was proposed. This strategy was based on the immobilization of antigen and the direct electrochemistry of horseradish peroxidase (HRP) that was labeled to an antibody. A reagentless immunosensor for carcinoma antigen-125 (CA 125) determination was developed. The immunosensor was prepared by immobilizing CA 125 with titania sol-gel on a glassy carbon electrode by the vapor deposition method. The incubation of the immunosensor in phosphate buffer solution (PBS) including HRP-labeled CA 125 antibody led to the formation of a HRP-modified surface. The immobilized HRP displayed its direct electrochemistry with a rate constant of 3.04 +/- 1.21 s(-1). With a competition mechanism, a differential pulse voltammetric determination method for CA 125 was established by the peak current decrease of the immobilized HRP. The current decrease resulted from the competitive binding of the CA 125 in sample solution and the immobilized CA 125 to the limited amount of HRP-labeled CA 125 antibody. Under optimal conditions, the current decrease was proportional to CA 125 concentration ranging from 2 to 14 units mL(-1) with a detection limit of 1.29 units mL(-1) at a current decrease by 10%. The CA 125 immunosensor showed good accuracy and acceptable precision and fabrication reproducibility with intraassay CVs of 8.7 and 5.5% at 8 and 14 units mL(-1) CA 125 concentrations, respectively, and interassay CV of 19.8% at 8 units mL(-1). The storage stability was acceptable in a pH 7.0 PBS at 4 degrees C for 15 days. The proposed method provided a new promising platform for clinical immunoassay.  相似文献   

8.
研制基于标准CM05工艺和微加工技术的微型糠化血红蛋白免疫传感器,可用于血液中糖化血红蛋白浓度与血红蛋白浓度的快速检测.该微传感器包括含有信号读出电路的传感集成芯片和一次性测试试条,实现了对4—24μg/mL糖化血红蛋白和60~180μg/mL血红蛋白的检测,响应时间小于3min,试剂用量10μL,具有简便、快速、试剂用量少等优点.  相似文献   

9.
Lin D  Wu J  Wang M  Yan F  Ju H 《Analytical chemistry》2012,84(8):3662-3668
A triple signal amplification strategy was designed for ultrasensitive immunosensing of cancer biomarker. This strategy was achieved using graphene to modify immunosensor surface for accelerating electron transfer, poly(styrene-co-acrylic acid) microbead (PSA) carried gold nanoparticles (AuNPs) as tracing tag to label signal antibody (Ab(2)) and AuNPs induced silver deposition for anodic stripping analysis. The immunosensor was constructed by covalently immobilizing capture antibody on chitosan/electrochemically reduced graphene oxide film modified glass carbon electrode. The in situ synthesis of AuNPs led to the loading of numerous AuNPs on PSA surface and convenient labeling of the tag to Ab(2). With a sandwich-type immunoreaction, the AuNPs/PSA labeled Ab(2) was captured on the surface of an immunosensor to further induce a silver deposition process. The electrochemical stripping signal of the deposited silver nanoparticles in KCl was used to monitor the immunoreaction. The triple signal amplification greatly enhanced the sensitivity for biomarker detection. The proposed method could detect carcinoembryonic antigen with a linear range of 0.5 pg mL(-1) to 0.5 ng mL(-1) and a detection limit down to 0.12 pg mL(-1). The immunosensor exhibited good stability and acceptable reproducibility and accuracy, indicating potential applications in clinical diagnostics.  相似文献   

10.
Zong C  Wu J  Wang C  Ju H  Yan F 《Analytical chemistry》2012,84(5):2410-2415
A sensitive chemiluminescence (CL) imaging immunoassay method for detection of multiple tumor markers with high throughput, easy operation, and low cost was developed. The immunosensor array was prepared by covalently immobilizing capture antibodies on corresponding sensing sites on a silanized disposable glass chip. Gold nanoparticle-based bioconjugates with a high molar ratio of horseradish peroxidase (HRP) to detection antibodies were used for signal amplification. Under a sandwich immunoassay, the CL signals triggered by HRP captured on each sensing cell were collected by a charge-coupled device for simultaneous measurement of biomarkers and combination diagnosis of certain tumors. As a proof of concept, the immunosensor array was applied to detect α-fetoprotein, carcinoma antigen 125, carbohydrate antigen 153, and carcinoembryonic antigen and to screen patients with liver, breast, or ovarian cancers. This method showed wide linear ranges over 5 orders of magnitude and much lower detection limits than previously reported multiplexed immunoassays. The high throughput and acceptable stability, reproducibility, and accuracy showed good applicability of the proposed multiplex CL imaging immunoassay in clinical diagnosis.  相似文献   

11.
An electrochemical nanoimmunosensor based on multiwall carbon nanotubes (MWCNTs)/gold nanoparticles (AuNPs) was developed for the amplified detection of prostate specific antigen (PSA). The amplified detection was achieved by the enhanced precipitation of 4-chloro-1-naphthol (CN) using a higher number of horseradish peroxidase (HRP) molecules attached on MWCNTs. The PSA nanoimmunosensor was fabricated by immobilizing a monoclonal anti-PSA antibody (anti-PSA) on the AuNP-attached thiolated MWCNT on a gold electrode. The sensor surface was characterized using scanning electron microscope, transmission electron microscope, quartz crystal microbalance, and electrochemical techniques. Cyclic and square wave voltammetric techniques were used to monitor the enhanced precipitation of CN that accumulated on the electrode surface and subsequent decrement in the electrode surface area by monitoring the reduction process of the Fe(CN)(6)(3-)/Fe(CN)(6)(4-) redox couple. Under the optimized experimental condition, the linear range and the detection limit of PSA immunosensor were determined to be 1.0 pg/mL to 10.0 ng/mL and 0.40 ± 0.03 pg/mL, respectively. The validity of the proposed method was compared with an enzyme-linked immunosorbent assay method in various PSA spiked human serum samples.  相似文献   

12.
Haque AM  Park H  Sung D  Jon S  Choi SY  Kim K 《Analytical chemistry》2012,84(4):1871-1878
We present an electrochemically reduced graphene oxide (ERGO)-based electrochemical immunosensing platform for the ultrasensitive detection of an antigen by the sandwich enzyme-linked immunosorbent assay (ELISA) protocol. Graphene oxide (GO) sheets were initially deposited on the amine-terminated benzenediazonium-modified indiun tin oxide (ITO) surfaces through both electrostatic and π-π interactions between the modified surfaces and GO. This deposition was followed by the electrochemical reduction of graphene oxide (GO) for preparing ERGO-modified ITO surfaces. These surfaces were then coated with an N-acryloxysuccinimide-activated amphiphilic polymer, poly(BMA-r-PEGMA-r-NAS), through π-π stacking interactions between the benzene ring tethered to the polymer and ERGO. After covalent immobilization of a primary antibody on the polymer-modified surfaces, sandwich ELISA was carried out for the detection of an antigen by use of a horseradish peroxidase (HRP)-labeled secondary antibody. Under the optimized experimental conditions, the developed electrochemical immunosensor exhibited a linear response over a wide range of antigen concentrations with a very low limit of detection (ca. 100 fg/mL, which corresponds to ca. 700 aM). The high sensitivity of the electrochemical immunosensor may be attributed not only to the enhanced electrocatalytic activity owing to ERGO but also to the minimized background current owing to the reduced nonspecific binding of proteins.  相似文献   

13.
Wang J  Liu G  Engelhard MH  Lin Y 《Analytical chemistry》2006,78(19):6974-6979
A novel electrochemical immunosensor for the detection of tumor necrosis factor-alpha (TNF-alpha) based on poly(guanine)-functionalized silica nanoparticles (NPs) label is presented. The detection of mouse TNF-alpha via immunological reaction is based on a dual signal amplification: (1) a large amount of guanine residues introduced on the electrode surface through sandwich immunoreaction and poly(guanine)-functionalized silica NP label; (2) Ru(bpy)3(2+)-induced catalytic oxidation of guanine, which results in great enhancement of anodic current. The synthesized silica NP conjugates were characterized with atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemistry. These experiments confirmed that poly(guanine) and avidin were immobilized on the surface of silica NPs. The performance of the electrochemical immunosensor was evaluated and some experiment parameters (e.g., concentration of Ru(bpy)3(2+), incubation time of TNF-alpha, etc.) were optimized. The detection limit for TNF-alpha is found to be 5.0 x 10(-11) g mL(-1) (2.0 pM), which corresponds to 60 amol of TNF-alpha in 30 microL of sample. This immunosensor based on the poly(guanine)-functionalized silica NP label offers great promise for rapid, simple, cost-effective analysis of biological samples.  相似文献   

14.
Liu GD  Wu ZY  Wang SP  Shen GL  Yu RQ 《Analytical chemistry》2001,73(14):3219-3226
A renewable amperometric immunosensor has been proposed for the determination of Schistosoma japonium antibody (SjAb) in rabbit serum. A paraffin-graphite-Schistosoma japonium antigen (SjAg) biocomposite, which needs no additional curing, was directly used to construct the immunosensors. The analytical sample containing the desired SjAb was mixed with SjAb labeled with horseradish peroxidase (HRP) to form the incubation solution for the competitive binding assay. Amperometry was used to determine the amount of HRP fixed on the sensor surface, which was related to the content of desired SjAb. Assay conditions were optimized, including the selection of substrate, the loading of SjAg in the biocomposite, the amount of labeled SjAb in the incubation solution, the incubation time, and the temperature. Using o-aminophenol (o-AP) as a substrate, amperometric detection at -200 mV (vs SCE) resulted in a pseudolinear detection range of about 0.36 to 14 microg/mL, with a detection limit of 0.36 microg/mL. Rabbit serum samples with varying infection degrees were analyzed, and the results demonstrated that the concentration that is detectable in this system meets the demands of clinical analyses. A new surface on the immunosensor for use in another competitive assay can be obtained by removing the original one and polishing the surface.  相似文献   

15.
A facile and simple electrochemical immunoassay for ultrasensitive determination of streptomycin residues (STR) in food was designed by using nanogold-assembled mesoporous silica (GMSNs) as bionanolabels on a three-dimensional redox-active organosilica-functionalized sensing interface. To construct such a sensing interface, we initially synthesized organosilica colloids by using wet chemical method, and then utilized the prepared colloidal organosilica nanocomposites for the immobilization of monoclonal anti-STR antibodies on a glassy carbon electrode based on a sol-gel method. The bionanolabels were prepared based on coimmobilization of horseradish peroxidase (HRP) and STR-bovine serum albumin conjugates (STR-BSA) on the GMSNs. With a competitive-type immunoassay format, the assay toward STR analyte was carried out in pH 5.5 acetate acid buffer (ABS) by using redox-active organosilica nanocomposites as electron mediators, biofunctionalized GMSNs as traces, and hydrogen peroxide (H(2)O(2)) as enzyme substrate. Under optimal conditions, the reduction current of the electrochemical immunosensor decreased with the increase in STR level in the sample, and displayed a wide dynamic range of 0.05-50 ng mL(-1) with a low detection limit (LOD) of 5 pg mL(-1) at 3s(B). Intra- and interassay coefficients of variation were less than 8.7 and 9.3% for STR detection, respectively. In addition, the methodology was validated with STR spiked samples including honey, milk, kidney, and muscle, receiving a good correspondence with the results obtained from high-performance liquid chromatography (HPLC).  相似文献   

16.
A silver nanoparticle-hollow titanium phosphate sphere (AgNP-TiP) hybrid is successfully synthesized and used as a label for electrochemical detection of human interleukin-6 (IL-6). Hollow TiP spheres with a diameter of 430 nm and an average thickness of 40 nm are synthesized by a template approach. The AgNPs are incorporated in situ into the TiP shell via an exchange process. The as-prepared AgNP-TiP hybrid shows outstanding biocompatibility, good dispersity and solubility in water, and high silver loading properties (289.2 mg of silver in 1.0 g of TiP). These advantages make the AgNP-TiP hybrid an effective candidate as an amplification label in immunoassay systems. Herein, the as-prepared AgNP-TiP hybrid is attached to a signal antibody (Ab(2) ) to produce Ab(2) -AgNP-TiP labels in the fabrication of an electrochemical immunosensor. The nanoparticle-based amplification labels, upon coupling with a magnetic sensing array, give rise to an extremely sensitive response to IL-6 in a linear range of 0.0005-10 ng mL(-1) with a detection limit of 0.1 pg mL(-1) . The proposed sensor exhibits high specificity, good reproducibility, and long-term stability, and may be a promising technique for protein and DNA detection.  相似文献   

17.
Na N  Liu H  Han J  Han F  Liu H  Ouyang J 《Analytical chemistry》2012,84(11):4830-4836
Combining plasma activation and cross-reactivity of sensor array, we have developed a plasma-assisted cataluminescence (PA-CTL) sensor array for fast sensing and discrimination of gaseous hydrocarbons, which can be potentially used for fast diagnosis of lung cancer. Based on dielectric barrier discharge, a low-temperature plasma is generated to activate gaseous hydrocarbons with low cataluminescence (CTL) activities. Extremely increased CTL responses have been obtained, which resulted in a plasma assistance factor of infinity (∞) for some hydrocarbons. On a 4 × 3 PA-CTL sensor array made from alkaline-earth nanomaterials, gaseous hydrocarbons showed robust and unique CTL responses to generate characteristic patterns for fast discrimination. Because of the difference in the component of hydrocarbons in breath, exhaled breath samples from donors with and without lung cancer were tested, and good discrimination has been achieved by this technique. In addition, the feasibility of multidimentional detection based on temperature was confirmed. It had good reproducibility and gave a linear range of 65-6500 ng/mL or 77-7700 ppmv (R > 0.98) for CH(4) with a detection limit of 33 ng/mL (38 ppmv) on MgO. The PA-CTL sensor array is simple, low-cost, thermally stable, nontoxic, and has an abundance of alkaline-earth nanomaterials to act as sensing elements. This has expanded the applications of CTL-based senor arrays and will show great potential in clinical fast diagnosis.  相似文献   

18.
Electrochemiluminescence immunosensor based on CdSe nanocomposites   总被引:1,自引:0,他引:1  
Jie G  Zhang J  Wang D  Cheng C  Chen HY  Zhu JJ 《Analytical chemistry》2008,80(11):4033-4039
A novel strategy for the enhancement of electrochemiluminescence (ECL) was developed by combining CdSe nanocrystals (NCs), carbon nanotube-chitosan (CNT-CHIT), and 3-aminopropyl-triethoxysilane (APS). A label-free ECL immunosensor for the sensitive detection of human IgG (HIgG) was fabricated. The colloidal solution containing CdSe NCs/CNT-CHIT composite was first covered on the Au electrode surface to form a robust film, which showed high ECL intensity and good biocompatibility. After APS as a cross-linker was covalently conjugated to the CdSe NCs/CNT-CHIT film, the ECL intensity was greatly enhanced. And, an intensity about 20-fold higher than that of the CdSe NCs/CNT-CHIT film was observed. After antibody was bound to the functionalized film via glutaric dialdehyde (GLD), the modified electrode could be used as an ECL immunosensor for the detection of HIgG. The specific immunoreaction between HIgG and antibody resulted in the decrease in ECL intensity. The ECL intensity decreased linearly with HIgG concentration in the range of 0.02-200 ng mL(-1), and the detection limit was 0.001 ng mL(-1). The immunosensor has the advantages of high sensitivity, speed, specificity, and stability and could become a promising technique for protein detection.  相似文献   

19.
Wang H  Zeng H  Liu Z  Yang Y  Deng T  Shen G  Yu R 《Analytical chemistry》2004,76(8):2203-2209
Immunophenotyping evaluation is of particular importance for the clinical diagnosis, therapy, and prognosis of acute leukemia. In this paper, an integrated piezoelectric immunosensor array has been developed for the first time to detect the differentiated leukocyte antigens for immunophenotyping of acute leukemia. The probes (crystals) of the array were fabricated with plasma-polymerized n-butylamine film and nanometer-sized gold particles on which the Fab'-SH fragments obtained by the reduction of leukemic lineage-associated monoclonal antibodies (markers) were subsequently immobilized. Investigation results showed that the developed immunosensor array could rapidly identify normal cells from leukemic blasts and define the leukemic blasts within certain phenotypic groups (lineages) by only one analysis of the sample purified or unpurified. It permits the detection of unpurified leukocytes in the dynamic concentration range of 2 orders of magnitude (10(4)-10(6) cells mL(-1)). Up to 17 successive assay cycles with retentive sensitivity were achieved for the probes regenerated with 8 M urea. Moreover, the piezoelectric immunoassay system was applied to evaluate a number of practical specimens with immunophenotyping results in acceptable agreement with those clinically classified. The newly proposed multiparameter analysis technique provides a rapid, simple, and direct alternative tool for clinical immunophenotyping of acute leukemia.  相似文献   

20.
A label-free, electrochemical impedance immunosensor based on surface modified thin flat gold wire electrode is reported for the quantitative detection of cardiac biomarker Myoglobin in aqueous solution. The protein antibody, ab-Mb, was covalently immobilized through a self assembled monolayer of 11-mercaptoundecanoic acid (MUA) and 3-mercapto propionic acid (MPA) via carbodiimide coupling reaction using N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide hydrochloride (EDC) and N-Hydroxy Succinamide (NHS). The immunosensor (ab-Mb/MUA-MPA/Au) was characterized by electrochemical techniques. The electrochemical performance of the immunosensor was studied by electrochemical impedance spectroscopy. The immunosensor showed an increased electrontransfer resistance on coupling with biomarker protein antigen, ag-Mb, in the presence of a redox probe [Fe (CN)6]3−/4−. The modified Au electrode immunosensor exhibits an electrochemical impedance response to antigen, ag-Mb concentrations in a linear range from 10 ng to 650 ng mL−1 with a lowest detection limit of 5.2 ng mL−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号